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Ádám Galambos1, Victor Reiner2

1 Department of Managerial Economics and Decision Sciences, Kellogg School of
Management, Northwestern University, e-mail: a-galambos@kellogg.northwestern.edu

2 Department of Mathematics, University of Minnesota, e-mail: reiner@math.umn.edu

The date of receipt and acceptance will be inserted by the editor

Abstract We show that Abello’s acyclic sets of linear orders [1] can be
described as the permutations visited by commuting equivalence classes
of maximal reduced decompositions. This allows us to strengthen Abello’s
structural result: we show that acyclic sets arising from this construction
are distributive sublattices of the weak Bruhat order. Fishburn’s alternat-
ing scheme is shown to be a special case. Any acyclic set that arises in
this way can be represented by an arrangement of pseudolines, and we use
this representation to derive a simple closed form for the cardinality of the
alternating scheme. The higher Bruhat orders prove to be a natural math-
ematical framework for this approach to the acyclic sets problem.

1 Introduction

Majority voting is one of the most commonly accepted and widely practiced
methods for aggregating preferences. It is well-known that social preferences
determined by majority voting on every pair of alternatives may be intran-
sitive. On the other hand, if voters’ preferences are restricted to lie within
certain domains, the problem of intransitivity can be avoided. Social choice
theorists have found several such domain restrictions [16,14], and this has
led to the question: Given n alternatives, what is the cardinality of the
largest domain of linear orders that still guarantees transitive social prefer-
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ences under pairwise majority voting?1 Such a domain is called an acyclic
set of linear orders.2

The question of finding maximum cardinality acyclic sets has proven to
be one of the most difficult combinatorial questions in social choice theory
[8]. While several upper and lower bounds have been found, and others
conjectured [1,7,13,8], the only successful attempt to study the structure of
“large” acyclic sets is Abello’s [1].3 He showed that a maximal chain in the
weak Bruhat order forms an acyclic set. Moreover, any maximal acyclic set
containing a maximal chain is an upper semimodular sublattice of the weak
Bruhat order ([1], Theorem 3.3). Our contribution is describing explicitly
these maximal acyclic sets containing a maximal chain in the weak Bruhat
order, and proving a slightly strengthened version of Abello’s Theorem 3.3
in a transparent way. We also show that Fishburn’s alternating scheme [7,8]
is the maximal acyclic set containing a particular chain in the weak Bruhat
order. Our approach is based on results on the higher Bruhat orders [18,6].
Placing Fishburn’s alternating scheme in this formal framework allows us
to derive an explicit formula for its cardinality.

In section 2 we define the combinatorial objects we will use, and discuss
the relationships among them. In section 3 we describe explicitly the max-
imal acyclic sets that contain a maximal chain in the weak Bruhat order,
and show how the alternating scheme fits in that framework. We derive the
formula enumerating the alternating scheme in section 3.1.

2 Definitions

Let R be the set of all total, transitive, reflexive and antisymmetric binary
relations (i.e. linear orders) on a finite set A of social alternatives. The finite
set of agents will be denoted by I, and their preferences (Ri)i∈I are from R.
Under majority voting, social preferences RM are defined by: for all a, b ∈ A

aRM b ⇐⇒ |{i ∈ I : aRib}| ≥ |{i ∈ I : bRia}|. (1)

1 We assume throughout that the number of voters is at least 3. This question
can be posed without reference to the number of voters because if a preference
profile results in intransitive social preferences under majority voting, then it
contains 3 preferences that would, by themselves, result in such intransitivity
[14].

2 Henceforth acyclic sets.
3 An early paper by Chameni-Nembua [3] seems to have anticipated some of

Abello’s and our results. In Section 3 of that paper, the author considers cer-
tain distributive sublattices of the weak Bruhat order called S.T.D.C. (for sous-

treillis distributif couvrant), which always form acyclic sets. These S.T.D.C. lat-
tices can always be extended (while remaining S.T.D.C.’s) to contain the identity
permutation and its reverse; such extended lattices are exactly the acyclic sets
considered by Abello. Part of the point of our work is to explain these Chameni-
Nembua/Abello distributive lattices as the lattices of order ideals in particularly
simple posets.
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For simplicity, we identify the n-set A with the set [n] := {1, 2, . . . , n} under
an arbitrary, fixed ordering of A, and we represent individual preferences as
permutations of [n]. A permutation π : [n] → [n] will be identified with the
linear order

π−1(1) > π−1(2) > · · · > π−1(n), (2)

and will be written as π−1(1)π−1(2) · · · π−1(n). The set of permutations is
denoted by Sn.

Definition 1 A set T ⊆ Sn is acyclic if for all i, j, k ∈ [n], at most two of
the orders ijk, jki, kij appear as a restriction to {i, j, k} of some order in
T .

Ward [16] introduced this condition as latin squarelessness,4 and showed
that with an odd number of voters it guarantees transitive majority. Sen
[14] introduced this condition for the setting where indifference in individual
preferences is allowed, and called it the “assumption of value-restricted pref-
erences.” He showed that in that setting it guarantees transitive majority.
While a profile of preferences that is not acyclic may produce a transitive
social preference under majority voting, acyclicity is clearly necessary in
the following sense: if a domain of preferences always produces a transitive
majority regardless of how many agents have each particular preference
relation, then this domain must be acyclic.5

Abello [1] used the structure imposed on the set Sn of linear orders by the
weak Bruhat order to construct acyclic sets. Since then significant work has
been done on the higher Bruhat orders [11,12,18,6]. Some of these results
are central to our approach, so we present them as we give the following
definitions.

For any permutation π ∈ Sn, let

inv(π) := {{i, j} : i < j and π(i) > π(j)} (3)

denote the inversion set of π. For example, inv(2143) = {{1, 2}, {3, 4}}. Let
B(n, 1) := {inv(π) : π ∈ Sn}.

Definition 2 The weak Bruhat order B(n, 1) is the partial order on B(n, 1)
defined by the transitive closure of single step set inclusion. That is, we
decree for two permutations σ and π that inv(π) is less than inv(σ) when
inv(π) ⊆ inv(σ) with |inv(π)|+1 = |inv(σ)|, and then we take the transitive
closure of this relation.

4 Ward comments on the term: “awkward, but there is a suggestive rhythmic
harmony with its predecessor, single peakedness.”[16]

5 Notice that acyclicity is a property of a set of preferences, not of a profile

of preferences. It is for this reason that we do not discuss restrictions on the
parity of the number of agents, although, for any particular preference profile, it
is important.
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The weak Bruhat order is a lattice [18, Theorem 4.4], and it is the same
as B⊆(n, 1), the set B(n, 1) partially ordered by set inclusion [17, Prop. 2.1].

Since every permutation of [n] can be uniquely identified by its inversion
set, the weak Bruhat order can also be viewed as a partial order on per-
mutations. For example, part b) of Figure 1 shows the weak Bruhat order
B(3, 1), while part a) shows it as a partial order on S3.

0

12 23

12, 13 13, 23

12, 13, 23

123

213 132

231

321

312

a) b)

Fig. 1 The weak Bruhat order B(3, 1)

A maximal chain in B(n, 1) is a sequence of permutations (π1, π2, . . . , πl)
such that πi+1 covers πi for i = 1, . . . , l − 1, and π1 is the identity while πl

is its reverse. These conditions force that the length l of this sequence will
be

(

n
2

)

. A maximal chain can be identified by the sequence of transpositions
that generates it. For example, we could identify the maximal chain

1234, 2134, 2314, 2341, 3241, 3421, 4321 (4)

by saying: transpose the first and the second element, then the second and
the third, etc. Since we always transpose adjacent elements, naming just the
position of the left element to be transposed suffices. Denoting the transpo-
sitions of the ith and the i + 1st element by si, we could describe the above
sequence as

1234
s1−→ 2134

s2−→ 2314
s3−→ 2341

s1−→ 3241
s2−→ 3421

s1−→ 4321. (5)

In fact, we may even omit the permutations — we could always recover
them from the sequence of transpositions: s1s2s3s1s2s1. We assume, im-
plicitly, that the sequence of permutations always starts with the identity.
Such a sequence of increasing adjacent transpositions si, resulting in the
reverse of the identity, is called a maximal reduced decomposition [2, Section
6.4].6 The permutations visited by a maximal reduced decomposition are the

6 Maximal because it starts with the identity and ends with its reverse, and
reduced because it has minimum length (namely

�
n

2

�
) among all the ones that start

with the identity and end with its reverse. The latter requirement is equivalent to
allowing only increasing transpositions: . . . ij . . . → . . . ji . . . with i < j.
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permutations in the maximal chain it corresponds to in the weak Bruhat
order. For example, the permutations visited by s1s2s3s1s2s1 above are

id = 1234 (6)

s1 = 2134

s1s2 = 2314

s1s2s3 = 2341

s1s2s3s1 = 3241

s1s2s3s1s2 = 3421

s1s2s3s1s2s1 = 4321.

A maximal reduced decomposition can also be viewed as a permutation
of

(

[n]
2

)

, the 2-subsets of [n]. Since it starts with the identity and ends with
its reverse, every pair must be transposed, and since it is reduced, every pair
must be transposed exactly once. The sequence of these transpositions gives
us a permutation of (unordered) pairs. In fact, a structure that generalizes
the weak Bruhat order can be imposed on the set of all such permutations of
pairs, or, generally, k-subsets of [n]. More precisely, the higher Bruhat order

B(n, k) is defined on the inversion sets of certain permutations of
(

[n]
k

)

.

Definition 3 [18] A permutation of
(

[n]
k

)

is admissible if the k-subsets of
any k + 1-subset of [n] appear either in lexicographic or in reversed lexi-

cographic order in it. The inversion set inv(ρ) ⊆
(

[n]
k+1

)

of an admissible
permutation ρ is the set of k + 1-subsets of [n] whose k-subsets appear in
reversed lexicographic order in ρ.

For example, inv({1, 2}{3, 4}{1, 4}{2, 4}{1, 3}{2, 3}) = {{1, 3, 4}, {2, 3, 4}}.

Definition 4 [18] Let

B(n, k) :=

{

inv(π) : π is an admissible permutation of

(

[n]

k

)}

. (7)

The higher Bruhat order B(n, k) is the partial order on B(n, k) defined by
the transitive closure of single step set inclusion.7

Notice that the order is defined on inversion sets, not on the permu-
tations themselves. While the inversion set (a set of 2-subsets of [n]) of a
permutation of [n] determines the permutation uniquely, the inversion set

(a set of (k+1)-subsets of [n]) of a permutation of
(

[n]
k

)

determines an equiv-
alence class of permutations. We now illustrate this for B(n, 2), the higher
Bruhat order we will use below.

7 The higher Bruhat order B(n, 2) is the same as B⊆(n, 2), the set B(n, 2) par-
tially ordered by set inclusion [4]. Note, however, that the analogous statement
does not hold for all B(n, k) [18]. Higher Bruhat orders have been shown to be
closely related to other combinatorial structures, such as hyperplane arrange-
ments, tilings, and wiring diagrams.
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A maximal chain in the weak Bruhat order, when viewed as a permuta-
tion of 2-subsets, is admissible [18, Lemma 2.4]. Moreover, every admissible

permutation of
(

[n]
2

)

can be naturally identified with a maximal chain in
the weak Bruhat order [18, Theorem 4.1(A)][12]. Since maximal chains in
B(n, 1) can be thought of as maximal reduced decompositions, we have that

admissible permutations of
(

[n]
2

)

, maximal chains in B(n, 1) and maximal re-
duced decompositions are essentially equivalent objects. How can we identify
admissible permutations (or maximal chains in B(n, 1), or maximal reduced
decompositions) that have the same inversion sets and thus are mapped to
the same element of B(n, 2)? Lemma 2.2 in [18] answers this question: two

admissible permutations of
(

[n]
2

)

have the same inversion sets if, and only
if, they are equivalent in the equivalence relation induced by the notion of
elementary equivalence:

Definition 5 [18, Def. 2.1][12, Def. 2.2] Two admissible permutations

of
(

[n]
2

)

are elementarily equivalent if they differ by an interchange of two
disjoint neighbors.8

To summarize, we illustrate the correspondences among permutations
of 2-subsets, maximal reduced decompositions, and maximal chains in the
weak Bruhat order.9 The weak Bruhat order B(4, 1) is shown in Figure 2.

Four maximal chains with their corresponding permutations of
(

[n]
2

)

and
maximal reduced decompositions are shown in Figure 3, which the reader
may find a useful reference in later discussions as well. These four permu-
tations of

(

[n]
2

)

are, in fact, equivalent — they all have {{1, 3, 4}, {2, 3, 4}}
as their inversion set. The union of the four maximal chains is the subposet
of B(4, 1) highlighted in Figure 2. The permutations visited by the four
maximal reduced decompositions are the permutations in this highlighted
subposet. When a set of maximal reduced decompositions correspond to an
equivalence class of permutations of

(

[n]
2

)

, we will call them an equivalence
class of maximal reduced decompositions. Theorem 1 below states that the
permutations visited by an equivalence class of maximal reduced decompo-
sitions form an acyclic set.

Since equivalence classes of maximal reduced decompositions turn out to
be the central objects in our analysis, we would like to have a concise repre-
sentation of them. In fact, an equivalence class of maximal reduced decom-
positions can be represented in a particularly useful way as an arrangement
of pseudolines.

8 The Lemma and the Definition are originally formulated for permutations of�
[n]
k

�
, k ≥ 1, though here we consider only the case k = 2. In general, the neighbors

to be interchanged must have at most k − 2 common elements.
9 See also [5] on the correspondences among these objects.
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1234

2134

2314

3214

3241

3421

4321

4231

4132

1423

1324

3124 1342

2413

412331422341

2431 4213
3412

1432

1243

2143

4312

Fig. 2 The weak Bruhat order B(4, 1)

2.1 Arrangements of pseudolines

We illustrate how one can represent an equivalence class of maximal reduced
decompositions as an arrangement of pseudolines10 by demonstrating it on
the example used in (6): s1s2s3s1s2s1. We associate a (pseudo-)line with
each of the numbers 1, 2, 3 and 4, and represent the starting permutation,
1234, by placing them in that order. The numbers 4, 3, 2, 1 on the right
indicate that the pseudolines will end up in that order after we carry out all
the transpositions. The first transposition, s1, corresponds to crossing the
first and second pseudolines (see Figure 5 on p. 10). The next transposition
is s2, so we cross the second and the third pseudolines.11 Continuing this
way, we cross the third and fourth pseudolines to represent s3. In general,
for si we cross the ith and i+1st pseudoline from the top. After we carry out
all the transpositions in the maximal reduced decomposition s1s2s3s1s2s1,
we get the arrangement of pseudolines shown in Figure 5.

10 The arrangements we consider are, in fact, simple numbered arrangements of

pseudolines. For more on arrangements and their relation to maximal chains see
[2, Section 6.4] and [10], and for the correspondence between arrangements and
elements of B(n, 2) see [4, p. 122].
11 Notice that we did not cross the pseudoline that is labelled 2, but, rather, the
second pseudoline from the top (with the third).
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1234

2134

4321

4231

2413

4213

2143

l

{1,2}{3,4}{1,4}{2,4}{1,3}{2,3}

l

s1s3s2s1s3s2

1234

4321

4231

2413

4213

2143

1243

l

{3,4}{1,2}{1,4}{2,4}{1,3}{2,3}

l

s3s1s2s1s3s2

1234

4321

4231

2413

2143

1243

2431

l

{3,4}{1,2}{1,4}{1,3}{2,4}{2,3}

l

s3s1s2s3s1s2

1234

4321

4231

2413

2143

2431

2134

l

{1,2}{3,4}{1,4}{1,3}{2,4}{2,3}

l

s1s3s2s3s1s2

Fig. 3 The correspondences among permutations of

�

[n]
2

�

, maximal chains, and maximal reduced decompositions
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a) b)

i

k i

j

k

j

ik

j

i k

j

Fig. 4 The set {i, j, k} is an inversion in a), but not in b)

It is easy to see that, given a maximal reduced decomposition, one can
construct from it an arrangement of pseudolines the way we did above. But
will distinct maximal reduced decompositions result in distinct arrange-
ments? The example above reveals that the answer must be “no.” The
maximal reduced decomposition s1s2s1s3s2s1 would result in exactly the
same arrangement — in other words, switching the adjacent s1 and s3 does
not change the arrangement. In general, the maximal reduced decomposi-
tions that correspond to the same arrangements of pseudolines are equiv-
alent [9]. Thus we can represent an equivalence class of maximal reduced
decompositions as an arrangement of pseudolines. It will be significant in
section 3.1 that the inversion set I ∈ B(n, 2) corresponding to the equiva-
lence class can be identified in the arrangement as follows. The restriction
of the arrangement to any triple i < j < k will either look like an upward
pointing triangle or like a downward pointing triangle (Figure 4). In the
first case {i, j, k} is an inversion, while in the second case it is not.

Though it is implicit in the above construction, we emphasize that the
permutations visited by an equivalence class of maximal reduced decom-
positions can be recovered from its corresponding arrangement. Each such
permutation corresponds to an additional pseudoline added to the arrange-
ment, i.e. a new pseudoline that crosses every other pseudoline exactly once.
The permutation corresponding to such a pseudoline is obtained by carry-
ing out all the transpositions that correspond to the vertices to the left of
the new pseudoline. For example, the pseudoline in Figure 6 corresponds
to s1s2s1, i.e. to 3214. Equivalently we could describe the permutation as
the order in which the new pseudoline crosses the four original pseudolines:
first it crosses pseudoline 3, then pseudoline 2, pseudoline 1 and pseudoline
4. Another way to describe this idea is through defining a natural partial
order on the crossings of the arrangement of pseudolines.

Definition 6 Let Vn be the set of crossings of an arrangement of pseudo-
lines A on n strings. The natural partial order PA on the crossings Vn is
defined by

ij PA kl ⇐⇒ {i, j} ∩ {k, l} 6= ∅ (8)

and ij is to the left of kl on the pseudoline connecting them.
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2
s

3

1

s

s

1

3

4

2

3

4

1

2

Fig. 5 The arrangement of pseudolines
corresponding to s1s2s3s1s2s1

2
s

3

1

s

s

1

3

4

2

3

4

1

2

Fig. 6 The permutation corresponding
to this new pseudoline is 3214

12

13

23

14

24

34

2

14

3

2

1 4

3

12

34

24

23 14

13

Fig. 7 The natural partial order on the crossings of an arrangement

For example, the arrangement in Figure 5 has V = {12, 13, 14, 23, 24, 34} as
its crossing set, and its natural partial order is:

12 PW 13 (9)

13 PW 14

12 PW 23

23 PW 24

13 PW 23

23 PW 34

14 PW 24

24 PW 34.

Figure 7 illustrates how the natural partial order is constructed. Drawing a
new pseudoline, as above, now determines an order ideal in the natural par-
tial order. For example, the new pseudoline drawn in Figure 6 corresponds
to the ideal generated by the crossing 23. Thus, in general, the lattice of
ideals of the natural partial order can be thought of as a partial order on
the permutations visited by the equivalence class of maximal reduced de-
compositions corresponding to the arrangement. Moreover, as we show in
Theorem 2, this lattice is a sublattice of the weak Bruhat order.
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3 “Large” acyclic sets

Abello [1] and Fishburn [7,8] constructed “large” acyclic sets using seem-
ingly different approaches. We will show that both constructions are based
on the same basic idea, namely that permutations visited by an equivalence
class of maximal reduced decompositions form an acyclic set (Theorem 1
below). This also provides an explicit construction of the acyclic sets Abello
defined implicitly (Theorem 2 below). In Theorem 3 we show that Fishburn’s
alternating scheme is the set of permutations visited by the equivalence class
of a particular maximal reduced decomposition, and we conjecture that it
is the largest acyclic set obtainable via this construction. Before we state
our results, we describe the alternating scheme and a useful generalization.

Fishburn [7] noted that a set of permutations is acyclic if, and only
if, every triple 1 ≤ i < j < k ≤ n satisfies a never constraint of the
form “a is never bth in the restriction to {i, j, k},” where a ∈ {i, j, k} and
b ∈ {1, 2, 3}.12 A never constraint is written as

aNbijk. (10)

The alternating scheme is a set of such never constraints:

Definition 7 The alternating scheme is the following set of never con-
straints:13

for all 1 ≤ i < j < k ≤ n, jN3ijk if j is even (11)

jN1ijk if j is odd.

The following generalization of the alternating scheme will be useful.

Definition 8 Let U ⊆
(

[n]
3

)

. The set of U -constraints is the following set of
never constraints:

for all 1 ≤ i < j < k ≤ n, jN3ijk if {i, j, k} /∈ U (12)

jN1ijk if {i, j, k} ∈ U.

In particular, the alternating scheme is the set of UA-constraints, where

UA = {{i, j, k}|1 ≤ i < j < k ≤ n and j is odd} . (13)

Every acyclic set described in this paper will satisfy a set of U -constraints
for some U ∈ B(n, 2).

Theorem 1 The permutations visited by an equivalence class of maximal
reduced decomposition form an acyclic set.

This result is implicit in Abello’s Theorem 3.3 together with his con-
cluding remarks [1].

Proof As discussed before and after Definition 5, equivalent maximal re-
duced decompositions correspond14 to permutations of

(

[n]
2

)

with the same

12 It is easy to see that this is equivalent to acyclicity (Definition 1).
13 Fishburn defines two “dually equivalent” [7] alternating schemes. For simplic-
ity, we introduce only one of these.
14 see Figure 3
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inversion set. That is, all the maximal reduced decompositions in the equiv-
alence class can be written as permutations of

(

[n]
2

)

with the same inver-

sion set, say I ⊆
(

[n]
3

)

. We will show that the permutations visited by this
equivalence class of maximal reduced decompositions satisfy the set of I-
constraints. Suppose {i, j, k} ∈ I, with 1 ≤ i < j < k ≤ n. Since {i, j, k}
is an inversion, in any maximal reduced decomposition in the equivalence
class it must be that j and k are transposed before i and j are. That is,
any permutation visited by the equivalence class satisfies the never con-
straint jN1ijk. A similar argument shows that for any {i, j, k} /∈ I, with
1 ≤ i < j < k ≤ n, the never constraint jN3ijk is satisfied by all permu-
tations visited by the equivalence class. Thus these permutations satisfy a
set of never constraints and so they form an acyclic set.

Theorem 1 provides an explicit construction of large acyclic sets — but
are these the maximal acyclic sets that contain a maximal chain in the
weak Bruhat order? Abello showed that a maximal acyclic set that contains
a maximal chain in the weak Bruhat order forms an upper semimodular
sublattice of the weak Bruhat order. We show below that Abello’s acyclic
sets are identical with those of our Theorem 1, and they form, in fact, a
distributive sublattice.

Theorem 2 Let C be a maximal chain in the weak Bruhat order B(n, 1)
(considered as a partial order on permutations). The largest acyclic set of
permutations containing C is the set of permutations visited by the equiva-
lence class of the maximal reduced decomposition corresponding to C. This
acyclic set forms a distributive sublattice of B(n, 1).

Proof Let I ∈ B(n, 2) be the inversion set corresponding to C. We have
shown in Theorem 1 that the set of permutations visited by the equiva-
lence class of the maximal reduced decomposition corresponding to C form
an acyclic set. In particular, all these permutations satisfy the set of I-
constraints. The following Claim shows that no other permutation satisfies
all the I-constraints.

Claim Let U ⊆
(

[n]
3

)

be an element of the higher Bruhat order B(n, 2)
(i.e. U is an inversion set). If a permutation π of [n] satisfies the set of
U -constraints, then it is one of the permutations visited by the commuting
equivalence class of maximal reduced decompositions that corresponds to
U . That is, it is a permutation of some maximal reduced decomposition
that corresponds to an admissible permutation (of

(

[n]
2

)

) with inversion set
U .

Proof of Claim By Lemma 2.2 of [18] we only need to show that the inversion

set I ⊆
(

[n]
2

)

of π constitutes an ideal in the poset Q that is the intersection
of all admissible orders with inversion set U . It is easy to see that Q is the
transitive closure of the following relations: for all 1 ≤ i < j < k ≤ n,

{i, j}Q{i, k} and {i, k}Q{j, k} if {i, j, k} /∈ U (14)

{j, k}Q{i, k} and {i, k}Q{i, j} if {i, j, k} ∈ U. (15)
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By Lemma 2.4 in [18], for all 1 ≤ i < j < k ≤ n, the inversion set of any per-
mutation can include only an initial or a final segment of {i, j}, {i, k}, {j, k}.
Since π satisfies the set of U -constraints, its inversion set must include an
initial segment of {i, j}, {i, k}, {j, k} if {i, j, k} /∈ U , and a final segment of
{i, j}, {i, k}, {j, k} if {i, j, k} ∈ U . Since Q is defined by (14) and (15), this
proves that the inversion set of π is indeed an ideal in Q.

To show the second claim in the Theorem, consider the arrangement of
pseudolines representing the equivalence class of maximal reduced decom-
positions. The permutations visited by the equivalence class correspond to
ideals of the natural partial order of this arrangement. Thus the lattice of
ideals is a partial order (a lattice) on these permutations. By definition,
this lattice orders the inversion sets of the permutations by inclusion, so it
is a sublattice of the weak Bruhat order. Since it is a lattice of ideals, by
Birkhoff’s Theorem it is distributive.

Now we show that the alternating scheme fits in the framework just
described.

Theorem 3 The alternating scheme is the set of permutations visited by an
equivalence class of maximal reduced decompositions.

Proof Recall that the alternating scheme is the set of UA constraints, where

UA = {{i, j, k}|1 ≤ i < j < k ≤ n and j is odd} . (16)

We will show that UA ∈ B(n, 2). In light of Theorems 1 and 2 and their
proofs, this will prove the Theorem. By [18, Theorem 4.1] we need to show
that for any {p, q, r, s} with 1 ≤ p < q < r < s ≤ n the intersection of UA

with {{p, q, r}, {p, q, s}, {p, r, s}, {q, r, s}} is either a beginning or an ending
segment of it. If q and r are even, the intersection is empty; if they are both
odd, the intersection is all four elements; if q is odd, but r even, then the
intersection is the first two elements; in the symmetric case it is the last
two. Thus we have verified that UA ∈ B(n, 2).

We illustrate the above results with the alternating scheme for n = 4.
The arrangement of pseudolines corresponding to it is shown in Figure 8.

We can find the inversion set (and thus the element of the higher Bruhat
order B(n, 2)) that this arrangement corresponds to: the pseudolines 1, 3
and 4 make a triangle that points up (Figure 9), and so {1, 3, 4} is part
of the inversion set corresponding to any maximal reduced decomposition
represented by this arrangement. On the other hand, the pseudolines 1,2
and 4 make a downward pointing triangle (Figure 10), and {1, 2, 4} is not
an inversion. The natural partial order of this wiring diagram is shown in
Figure 12, and Figure 11 shows it embedded in the arrangement.

The lattice of ideals of the natural partial order is shown in part b) of
Figure 13. Part a) of Figure 13 illustrates that each ideal may be identified
with the initial segment of a (non-unique) maximal reduced decomposition
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Fig. 12 The natural partial order

corresponding to the arrangement. As shown above, the maximal reduced
decompositions identified with the top element in part a) of the Figure
constitute an equivalence class. If we replace the initial segments of the
maximal reduced decompositions with the permutations they generate, i.e.
if we identify each element of the lattice with a permutation, we get the
sublattice of the weak Bruhat order B(4, 1) described in Theorem 2 — this
sublattice is shown in part c) of Figure 13 and is highlighted in Figure 2.
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Fig. 13 The lattice of ideals of the natural partial order
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3.1 Enumerating the alternating scheme

Fishburn conjectured [7, Conjecture 2] that among acyclic sets that do not
use an N2 (or “never second”) constraint, the alternating scheme has max-
imum cardinality. The following conjecture is a weakening of his.

Conjecture 1 Among acyclic sets that are the permutations visited by some
equivalence class of maximal reduced decompositions, the alternating scheme
has maximum cardinality.

This conjecture is based on intuition from enumerating the alternating
scheme in the particular way we describe below. Fishburn has shown that for
n ≤ 6, the alternating scheme achieves maximum cardinality, which implies
Conjecture 1 above for those cases. We have checked that Conjecture 1 also
holds for n = 7.

Our method of enumerating the permutations that satisfy the alternat-
ing scheme of Fishburn [8] amounts to deriving the cardinality of the lattice
of ideals of the natural partial order of the arrangement of pseudolines that
corresponds to the inversion sets UA (see (13) on p. 11). For example, the
arrangement in Figure 8 corresponds to the inversion set of the alternating
scheme when n = 4: {{1, 3, 4}, {2, 3, 4}}. Thus we can enumerate the per-
mutations satisfying the alternating scheme by counting the ideals of the
poset in Figure 12. There are nine such ideals, and, indeed, the cardinality
of the alternating scheme is nine when n = 4. Because the natural partial
order of an arrangement of pseudolines corresponding to the alternating
scheme is very regular, we can pursue the same strategy to derive a general
formula.

We illustrate the approach for n = 8. The arranegement correspond-
ing to the alternating scheme is shown in Figure 14. The regularity of the
diagram is not coincidental: every arrangement corresponding to the alter-
nating scheme for even n will look like this. To see why, notice that even
numbered pseudolines must move up first, because they are in the middle
of non-inversions. Then they must cross every smaller pseudoline before
they cross any of the larger ones. Odd pseudolines must move down first,
because they are in the middle of inversions. Then they must cross every
larger pseudoline before they cross any of the smaller ones. The natural par-
tial order is highlighted in Figure 14. To enumerate the alternating scheme,
we must count the ideals of this poset. An ideal can be identified by its
upper boundary, as shown in Figure 14. The empty ideal, however, cannot
be represented by such a boundary, and neither can any of the ideals con-
sisting of fewer than four of the elements in the bottom rank. To correct
this, we add two extra ranks at the bottom, extending the arrangement and
the natural partial order as in Figure 15. We can represent the empty ideal
by the boundary shown in Figure 15. Now every ideal may be represented
by its boundary, that is, by a lattice path in the arrangement that starts
on the top and proceeds downward until it reaches the bottom. In other
words, every ideal corresponds to a path from one of the circled points on
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Fig. 14 The arrangement for the alternating scheme when n = 8. The natural
partial order is highlighted. An ideal can be identified by its upper boundary.

Fig. 15 The natural partial order, extended so that the empty ideal can be
represented as a lattice path (drawn thick)

the top to one of those circled on the bottom (Figure 16). This means that
enumerating the set of permutations that satisfy the alternating scheme
amounts to counting the paths from top to bottom in the extended version
of the natural partial order of the arrangement. We use standard lattice
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Fig. 16 Representing ideals as paths

path enumeration techniques to sum these paths, and then manipulate the
resulting sums to obtain the formula in the following Theorem.

Theorem 4 The cardinality of the alternating scheme is

An = 2n−3 (n + 3) −

{
(

n−2
n

2
−1

) (

n − 3
2

)

for even n
(

n−1
n−1

2

) (

n−1
2

)

for odd n
(17)

Proof We will prove the theorem for even n — the case of odd n is very
similar. The extended version of the natural partial order of the arrangement
for n even will be just like that shown in Figure 16, with n

2 +1 circled starting
points on the top (and the same number of ending points on the bottom).
The length of a path will be n − 2. Using standard lattice path counting
techniques (explained below), we will obtain

An = A1
n − A2

n − A3
n (18)

where

A1
n :=

n

2
+1

∑

i=1

n

2
+1

∑

j=1

(

n − 2
n
2 − 1 + |i − j|

)

(19)

A2
n :=

n

2
+1

∑

i=1

n

2
+1

∑

j=1

(

n − 2
n
2 + i + j − 2

)

A3
n :=

n

2
+1

∑

i=1

n

2
+1

∑

j=1

(

n − 2
n
2 + n − i − j + 3

)

.
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A1
n counts the paths that start from some crossing on the top and end at

a crossing on the bottom. We must subtract A2
n and A3

n, the cardinalities
of the paths that go beyond the diagram (Figure 16) on the right or on the
left. The above formulae for A2

n and A3
n follow from the reflection principle

[15, p. 130].
Each of these can be summed using two consequences of the Binomial

Theorem (for even N):

N
∑

k= N

2
+1

(

N

k

)

=
1

2

[

2N −

(

N
N
2

)]

(20)

and
N

∑

k= N

2
+1

k

(

N

k

)

=
N

2
2N−1. (21)

We now derive the formula for A1
n:

A1
n =

n

2
+1

∑

i=1

n

2
+1

∑

j=1

(

n − 2
n
2 − 1 + |i − j|

)

(22)

= −
(n

2
+ 1

)

(

n − 2
n
2 − 1

)

+

n

2
∑

k=0

2
(n

2
+ 1 − k

)

(

n − 2
n
2 − 1 + k

)

where here we have used the fact that |i − j| takes on each value k in the
range [0, n

2 ], and it takes on each such value k (except for k = 0) exactly
2

(

n
2 + 1 − k

)

times. Continuing, one has

A1
n = −

(n

2
+ 1

)

(

n − 2
n
2 − 1

)

+

n−2
∑

l= n

2
+1

2 (n − l)

(

n − 2

l

)

= −
(n

2
+ 1

)

(

n − 2
n
2 − 1

)

+ 2n

(

2n−3 +
1

2

(

n − 2
n
2 − 1

))

−

− (n − 2) 2n−3 − (n − 2)

(

n − 2
n
2 − 1

)

= 2n−3 (n + 2) +
(

1 −
n

2

)

(

n − 2
n
2 − 1

)

.

Similar algebraic manipulation gives us

A2
n =

(

n

4
−

1

2

) (

n − 2
n
2 − 1

)

(23)

A3
n = 2n−3

(n

2
− 1

)

−
n

4

(

2n−2 −

(

n − 2
n
2 − 1

))

. (24)
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Thus we have

An = A1
n − A2

n − A3
n (25)

= 2n−3 (n + 3) −

(

n − 2
n
2 − 1

) (

n −
3

2

)

.
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10. Branko Grünbaum. Arrangements and Spreads. Number 10 in Regional Con-

ference Series in Mathematics. American Mathematical Society, 1972.
11. Yu. I. Manin and V. V. Schechtman. Higher Bruhat orders, related to the

symmetric group. Functional Analysis Applications, 20:148–150, 1986.
12. Yu. I. Manin and V. V. Schechtman. Arrangements of hyperplanes, higher

braid groups and higher Bruhat orders. In J. Coates et al., editor, Algebraic

Number Theory — in honor of K. Iwasawa, volume 17 of Advanced Studies in

Pure Mathematics, pages 289–308. Kinokuniya Company / Academic Press,
1989.

13. Ran Raz. VC-dimension of sets of permutations. Combinatorica, 20(2):241–
255, 2000.

14. Amartya K. Sen. A possibility theorem on majority decisions. Econometrica,
34(2):491–499, April 1966.

15. Dennis Stanton and Dennis White. Constructive Combinatorics. Springer-
Verlag, 1986.

16. Benjamin Ward. Majority voting and alternative forms of public enterprises.
In J. Margolis, editor, The Public Economy of Urban Communities. Johns
Hopkins Press, Baltimore, 1965.

17. Takemi Yanagimoto and Masashi Okamoto. Partial orderings of permutations
and monotonicity of a rank correlation statistic. Ann. Inst. Statist. Math.,
21:489–506, 1969.

18. Günter M. Ziegler. Higher Bruhat orders and cyclic hyperplane arrangements.
Topology, 32(2):259–279, 1993.


