
Online Appendix for Eső and Galambos (2012),

“Disagreement and Evidence Production in Strate-

gic Information Transmission”

Example 2

This example demonstrates that Condition M can fail in our model without

further assumptions, and that as a result there can be several equilibria

featuring the same number of actions induced through cheap talk.

Let UR
(y, θ) = −(y−θ)2

and US
(y, θ) = −(y−θ−0.01)

2
, that is b = 0.01;

assume the cost of hard information is c = 0.01. Let θ have pdf

f(θ, ε) =






5.5 if θ < 0.1− ε

3− 5
2ε(θ − 0.1) if 0.1− ε ≤ θ ≤ 0.1 + ε

0.5 if θ > 0.1 + ε,

where ε > 0. The density is continuous and weakly decreasing, so the cdf of

θ is continuously differentiable and concave. As ε → 0, f(θ, ε) converges to

a density that is a discontinous step function. We use the limiting density

f(θ) =

�
5.5 if θ < 0.1

0.5 if θ ≥ 0.1

for the calculation of expected values, which is arbitrarily precise for ε suffi-

ciently small.

Condition M fails

Suppose the first cutoff is a1 = 0.09. For the Sender type at 0.09 to be

indifferent between the Reciever’s optimal actions y1 = µ(0, 0.09) = 0.045

and y2 = µ(0.09, a2), it must hold that (0.045 + y2)/2 = 0.09 + 0.01. Thus

y2 = 0.155. Then a2 is determined by the condition that y2 = 0.155 is the

expectation of θ given that it falls between 0.09 and a2:

5.5× 0.01× 0.095 + 0.5(a2 − 0.1)(0.5a2 + 0.05)

5.5× 0.01 + 0.5(a2 − 0.1)
= 0.155.

We solve this to get a2 = 0.2823774.
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Suppose the first cutoff is a�
1 = 0.1. Sender type 0.1 is indifferent between

the Reciever’s optimal actions y�
1 = µ(0, 0.1) = 0.05 and y�

2 = µ(0.1, a�
2), if

(0.05 + y2)/2 = 0.1 + 0.01. Thus y�
2 = 0.17. Then a�

2 is determined by the

condition that y�
2 = 0.17 is the expectation of θ given that it falls between

0.1 and a�
2. Since the pdf is constant on this interval, we get a�

2 = 0.24.

Thus we find a�
1 > a1 and a�

2 < a2, contradicting Condition M.

Equilibria

First calculate an equilibrium when the first partition ends at a1 < 0.1. The

Receiver’s response to the first partition is y1 = a1/2. To make sure that

the indifference condition for a1 holds, the Receiver’s response to the second

partition will have to be

y2 = 2(a1 + 0.01)− y1.

Then to find the upper end of the second partition element we solve

5.5× 0.5(0.1− a1)(0.1 + a1) + 0.25(a2 − 0.1)(a2 + 0.1)

5.5(0.1− a1) + 0.5(a2 − 0.1)
= y2

to get

a2 = 0.02

�
1 + 75a1 +

�
−149 + 6550a1 − 49375(a1)

2
�
.

We now solve for a1 using the condition that type a2 is indifferent between

the cheap-talk induced action y2 and sending the hard signal:

(a2 + 0.01− y2)
2

= 0.01
2
+ 0.01.

This equation is solved by a1 = 0.0352302 (and has another solution as well),

which yields a2 = 0.163344.
Now calculate an equilibrium such that the first partition ends at a�

1 > 0.1.
The Receiver’s response to the first partition is

y�
1 =

0.05× 0.55 + 0.25(a�
1 − 0.1)(a�

1 + 0.1)

0.55 + 0.5(a�
1 − 0.1)

.

To make sure that the indifference condition for a�
1 holds, the Receiver’s

response to the second partition will have to be

y�
2 = 2(a�

1 + 0.01)− y�
1.
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Then to find the upper bound of the second partition element we use the

condition that y�
2 has to be the Receiver’s optimal response when the Sender’s

type is in [a1, a2]:

0.25(a�
2 − a�

1)(a
�
2 + a�

1)

0.5(a�
2 − a�

1)
= y�

2.

This yields

a�
2 = 1.04− 0.55

0.5 + 0.5a�
1

+ 2a�
1.

We now solve for a�
1 using the condition that type a�

2 is indifferent between

the cheap-talk induced action y�
2 and sending the hard signal:

(a�
2 + 0.01− y�

2)
2

= 0.01
2
+ 0.01.

This equation is solved by a�
1 = 0.121674, which yields a�

2 = 0.302672.
Thus we found a second equilibrium with two cheap-talk induced actions

and hard signaling.

Example 3

The purpose of this example is to demonstrate that in the uniform-quadratic

specification (uniform θ, quadratic loss), when the bias is strictly increasing,

it is possible that in equilibrium, a pointwise increase in the bias leads to

some cheap-talk partition elements increasing.

Assume that θ is uniform on [0, 1], yR
(θ) = θ, yS

(θ) = θ + b(θ, e), where

b(θ, e) = θ2/5 + e depends on parameter e that we will use to increase bias

pointwise. Both players have quadratic loss functions, and the cost of a hard

signal is c = 0.05.

Suppose the equilibrium mapping (from Sender types to Receiver actions)

is characterized by three intervals of Sender types that induce three different

actions via cheap talk, and a top partition element in which hard signals are

sent. To find the equilibrium partition cutoffs, 0 < a1 < a2 < a3 < 1, we

solve the following indifference conditions:

a2 = 2a1 + 4b(a1, e)

a3 = 2a2 − a1 + 4b(a2, e)

b(a3, e)
2
+ 0.05 =

�
a3 + b(a3, e)−

a2 + a3

2

�2

.

3



The first equation says that a1 is indifferent between inducing a1/2 and (a1 +

a2)/2; the second one is that a2 is indifferent between inducing (a1 + a2)/2
and (a2 + a3)/2, and the last one expresses that a3 is indifferent between

inducing (a2 +a3)/2 via cheap talk and revealing a3 via a hard signal, at cost

c = 0.05.

For various values of the bias parameter e, the following equilibrium par-

titions result:

e a1 a2 a3 a3 − a2

0.0001 0.171154 0.366144 0.668782 0.302639

0.0002 0.170768 0.365664 0.668329 0.302665

0.0003 0.17038 0.365184 0.667876 0.302692

0.0004 0.169993 0.364704 0.667422 0.302718

0.0005 0.169605 0.364223 0.666968 0.302745

Note that each cutoff point is decreasing in e. As the bias increases, more

types send hard signals (the length of the highest partition element is in-

creasing). However, the length of the third equilibrium partition element

(in which cheap-talk messages inducing (a2 + a3)/2 are sent) is increasing as

well. This cannot happen in the specification with a constant Sender bias,

as shown in Proposition 4 of the paper.
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