Building a Better Oarsman: Conceptual Integration and Motor Learning in Rowing Instruction

Nicholas Carson Miller and Robert F. Williams

Impetus: The Skiing Waiter Blend
“One of us had a ski instructor who prompted him to stand properly and face in the right direction as he raced downhill by inviting him to imagine that he was a waiter in a Parisian café carrying a tray with champagne and croissants on it and taking care not to spill them.”
- Fauconnier & Turner, 2002, p. 21

Questions
- How can visualizing a different (even impossible) activity improve performance of the present activity?
- What does the change in performance tell us about the role of conceptualization in motor learning?

Study
1. Collected samples of blended visualizations used by rowing coaches in practice sessions
2. Compared domains with which the rowing stroke was blended
3. Analyzed the conceptual blends and how they functioned to improve rowing performance

Group I: Incorporating attractors from other motor activities
Blending with athletic or everyday activities
“think about an ice skater as they push off and glide”
“imagine yourself hanging from a pull-up bar”
“reach forward like you’re passing someone a cup of coffee”

Group II: Adding image-schematic and/or force-dynamic structure
Blending with a familiar shape, path of motion, or force-dynamic gestalt
“draw a long rectangle with your hands”
“as if it were a rebound of a ball against a wall”
“trace a bicycle chain with your hands”

Projecting mental imagery onto the environment adds image-schematic structure to guide the performance of action.

Group III: Establishing reference sensations
Blending with familiar feelings or sensations
“It’s gonna feel like you’re slapping the blade against the water”
“let it feel like you’re pulling yourself up through molasses”
“when the oar enters the water, it should sound like an overripe tomato hitting pavement from ten stories up”

Establishing a reference sensation produces an expectation against which actual sensations can be compared, providing feedback to judge and correct performance.

Conclusions
Conceptual blending influences how our bodies function and how we learn to perform complex activities. Blended visualizations work in concert with direct instruction to construct skills by:
- Borrowing attractors to produce more stable patterns of activity
- Adding imagistic structure to guide action
- Establishing reference sensations for analysis of feedback
- Helping the novice form a conceptual model of the activity

Selected References