Gesture in Everyday Scientific Reasoning and Explanation

Robert F. Williams
Motivation

Explaining the phases of the moon
Question

How does gesture function in everyday scientific reasoning and explanation?
Explanation vs. Reasoning
(Crowder & Newman 1993; also Roth & Welzel 2001; Singer et al. 2008; etc.)

Describing Models
- Synchronized with speech
- Redundant iconics & simple points
 - illustrate / highlight
- Outside perspective
 - gesture in front of body
 - look at addressee

Building & Running Models
- Often precede speech
- Enhancing iconics & elaborated points
 - add / explore meanings
- Inside perspective
 - inhabit gesture space
 - watch gestures

Presentational
Exploratory
Method

• Posed questions to small groups of college students (3 - 5 students, diverse majors)
 – What causes the seasons? / Why is hot in the summer and cold in the winter?
 – What causes the phases of the moon?
 – What causes the tides? / Why is the tide highest at the full moon?

• Instructed to:
 1. Discuss until they agree
 2. Explain their answer
Choice of Topics

• (Mis)conceptions
 – **Seasons**: tilt of earth vs. distance from sun
 – **Phases**: angle of viewing vs. earth’s shadow
 – **Tides**: moon’s & sun’s gravity vs. moon’s gravity (alone)

• Representational challenges
 – Complex spatial relations (2 or 3 objects, 3D)
 – Multiplicity of motions
 – Force dynamics (gravity)
 – Non-human scale (cosmic)
Analysis

• Macro-level
 – Patterns: group reasoning vs. explaining answers

• Micro-level (*reasoning*)
 – Collaborative building & running of models
 • Conceptual inputs, mappings, and blends
 • Anchoring in the physical environment
 • Enactment of dynamics to generate inferences
 – Functions of gesture
 • Representational gestures & deictic points/traces
Explaining Answers

seasons – phases – tides
Group Reasoning

- Separation of gesture & speech (lack of words)
Group Reasoning

- Mirroring of gestures
Group Reasoning

- Co-inhabiting gesture space
Group Reasoning

- Collaborative gesturing
Collaborative Model-Building

Using facets

- Introducing facets with speech and gesture
- Fitting facets together
- Testing emergent models

What causes the seasons?

- rotation of earth
- angle of axis
- moon / sun / planetary bodies
- magnetic fields
- hours of sunlight
- orbit around sun / position & distance
- earthquakes / geological phenomena
Next Steps

• Documentation of macro-level patterns

• Micro-analysis of episodes
 – Conceptual level:
 • introducing conceptual content
 • anchoring conceptual entities
 • coordinating, mapping, blending
 • enacting dynamics \textit{(etc.)}
 – Discourse level:
 • establishing common ground
 • building models
 • generating inferences \textit{(etc.)}
References

