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An embodied view of mathematical cognition needs to account not only for how we use 
our bodies to think and communicate mathematically but also how our bodies equip us to 
conceive of mathematical ideas.  Research in cognitive semantics claims that the human 
conceptual capacity rests on a foundation of image schemas: topological patterns of 
spatial relations and simple dynamics abstracted from sensorimotor experience.  A 
cognitive ethnography of elementary mathematics lessons in clock-reading reveals 
different image schemas used to read the hour for landmark times (three o’clock), relative 
times (a quarter past three), and absolute times (three fifteen).  When considered together 
with the sequence of learning, the image schema analysis predicts the most common error 
observed in children’s time-telling while also revealing the source of latent errors that 
lead to sudden breakdowns.  Comparison of the image-schematic structure of different 
levels of sophistication in reading “quarter past” times illustrates how enriched image-
schematic structure interrelates different aspects of time-telling, supporting flexible 
performance in novel situations.  Relating visible actions to these aspects of ongoing 
conceptualization will help us provide a more complete account of embodied 
mathematical cognition, teaching, and learning. 
 

INTRODUCTION 

A focus on the embodied aspects of mathematical cognition leads directly to considering 
how the body is used in mathematical reasoning, in expressing mathematical ideas, and, 
of particular interest to the learning sciences, in teaching and learning mathematics in 
educational settings.  Yet there may be an even more fundamental way in which 
mathematical cognition is embodied: in the bodily basis of the conceptual system we use 
to think mathematically.  Research in cognitive semantics over the last three decades 
provides evidence that the human conceptual system is founded on image schemas, basic 



Williams  Image Schemas in Clock-Reading 

 2 

patterns of topological relations and simple dynamics that derive from regularities in 
sensorimotor experience.  When we conceptualize mathematical ideas, the image-
schematic structure of the conceptualization provides an embodied basis for inferences, 
supporting mathematical reasoning and problem-solving. 

In this article, I examine the role of image schemas in an everyday cognitive 
activity that receives considerable attention in the early elementary (K-3) mathematics 
curriculum: reading the time on an analog clock.  Telling time is an essential life skill and 
a fine example of the cognitive complexities involved in learning to perform a seemingly 
mundane activity.  Successful clock-reading calls upon knowledge of numbers, shapes, 
fractional parts, geometric relations, methods of counting, time divisions, and other 
mathematical concepts, all of which must be successfully coordinated with structures on 
the clock face to render different types of time readings.  In what follows, I describe 
image schemas essential to reading the hour correctly for different ways of naming times, 
such as three o’clock, a quarter past three, and three fifteen.  Then I use this analysis to 
explain how the most common error in children’s clock-reading follows directly from the 
image schemas and the order in which different times are learned.  Finally, I illustrate 
how enriched image-schematic structure in the conceptualization of a clock time supports 
the flexible performances that are emblematic of understanding and adaptive expertise. 

IMAGE SCHEMAS IN MATHEMATICAL COGNITION 

Mathematics is widely considered to be a pure and powerful form of human reasoning.  
And yet mathematical thinking, like all human thinking, must be grounded in the human 
conceptual system.  Drawing on decades of research in cognitive semantics, Lakoff and 
Núñez (2000) present a detailed analysis of the cognitive foundations of arithmetic, 
algebra, logic, and set theory, arguing that each is ultimately grounded in embodied 
experience.  They use their analysis to explain how the human cognitive system is able to 
conceptualize infinity, real and transfinite numbers, continuous and discontinuous 
functions, and other mathematical ideas.  Central to Lakoff and Núñez’s embodied 
account of mathematical cognition is the image schema. 

The term “image schema” was introduced in 1987 in books by the linguist George 
Lakoff and the philosopher Mark Johnson (Lakoff, 1987; Johnson, 1987).  In the preface 
to his book, Johnson defines an image schema as “a recurring dynamic pattern of our 
perceptual interactions and motor programs that gives coherence and structure to our 
experience” (xiv).  These regular patterns in sensorimotor experience form the basis for 
our earliest concepts, providing a foundation for the human conceptual system (Mandler, 
2004).  Hampe (2005) offers this summary of the characteristics of image schemas 
compiled from Lakoff and Johnson’s original works: 

 Images schemas are directly meaningful (“experiential”/ ”embodied”), 
preconceptual structures, which arise from, or are grounded in, human 
recurrent bodily movements through space, perceptual interactions, 
and ways of manipulating objects. 
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 Image schemas are highly schematic gestalts which capture the 
structural contours of sensory-motor experience, integrating 
information from multiple modalities. 

 Image schemas exist as continuous and analogue patterns beneath 
conscious awareness, prior to and independently of other concepts. 

 As gestalts, image schemas are both internally structured, i.e., made 
up of very few related parts, and highly flexible.  This flexibility 
becomes manifest in the numerous transformations they undergo in 
various experiential contexts, all of which are closely related to 
perceptual (gestalt) principles.  (pp. 1-2; emphasis in original) 

Among the earliest identified image schemas were PART-WHOLE, CENTER-PERIPHERY, 
LINK, BALANCE, CONTAINMENT/CONTAINER, and PATH/SOURCE-PATH-GOAL, as well as the 
force schemas ENABLEMENT, BLOCKAGE, COUNTERFORCE, ATTRACTION, COMPULSION, 
DIVERSION, RESTRAINT, and REMOVAL OF RESTRAINT (Hampe, 2005, p. 2).  As this list 
suggests, image schemas are thought to be basic topological patterns of spatial relations 
and dynamics that recur in our sensorimotor experience as embodied beings perceiving 
and acting in the physical world.  They are important because, in Johnson’s words, they 
“help to explain how our intrinsically embodied mind can at the same time be capable of 
abstract thought.  As patterns of sensory-motor experience, image schemas play a crucial 
role in the emergence of meaning and in our ability to engage in abstract 
conceptualization and reasoning that is grounded in our bodily engagement with our 
environment” (2005, p. 15; see also Lakoff, 1990).  Put simply, image schemas “make it 
possible for us to use the structure of sensory and motor operations to understand abstract 
concepts and draw inferences about them” (Johnson, 2005, p. 24).  From this perspective, 
abstract thought is a form of embodied cognition, depending crucially on the image-
schematic structure of conceptualizations. 

An elementary mathematical example, adapted from the more detailed analyses in 
Lakoff & Núñez (2000), is the contrast between different ways of conceiving of addition 
and subtraction.  One way to conceive of these arithmetic operations is in terms of 
collections of objects: putting collections together (adding numbers) or taking a smaller 
collection from a larger collection (subtracting a smaller number from a larger number).  
Here the sensorimotor experiences of manipulating objects and perceiving groupings 
provide image-schematic structure that frames the conceptual operations of arithmetic, 
including such properties as magnitude, stability of results, inverse operations, 
commutativity, associativity, and so on (pp. 54-60).  The image-schematic structure 
inheres in the mathematical conception even in the absence of any connection to the 
world of physical objects.  With this conception, however, the notion of subtracting a 
larger number from a smaller number is nonsensical: it is impossible to extract a larger 
collection from a smaller one.  On the other hand, if addition and subtraction are 
conceived of in terms of directional motion along a path, a number line, then subtracting 
a larger number from a smaller number becomes sensible: moving to the left past the 
origin, where negative numbers take on a clear meaning (pp. 71-74).  Differences in the 
image-schematic structure of these conceptions of addition and subtraction yield 
fundamentally different meanings: a number as a collection of objects vs. as a location, a 
magnitude as the size of a collection vs. as a distance, the operations of addition and 
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subtraction as placing and removing objects vs. as moving in a specified direction, zero 
as absence vs. as origin, and so on.  The example illustrates how the same named entity 
can be conceptualized in different ways, but more importantly, it shows how differences 
in the image-schematic structure of these conceptualizations support different inferences.  
Inferences that are readily apparent in one conceptualization may be invisible or 
unsupportable in another.1  These points will bear directly on our analysis of image 
schemas in clock-reading and the implications that follow. 

SOURCE OF THE DATA 

The analysis of clock-reading presented here is based on a cognitive ethnography of 
elementary time-telling instruction undertaken as dissertation research for a doctoral 
degree in cognitive science (Williams, 2004).  Cognitive ethnography is the study of how 
cognitive activities are accomplished in real-world settings (Hutchins, 2003; Williams, 
2006b).  Its aim is to provide an ecologically valid account of human cognition as an 
embodied process embedded in culturally constituted activity.  Its method consists of 
detailed micro-analysis of recordings of situated cognitive activity—reasoning, decision-
making, and problem-solving, often involving multiple participants and/or various tools 
and representational artifacts.  Ethnographic evidence gathered from participant 
observation, interviews, artifact analysis, and so on, is used to warrant interpretations of 
the video data.  This work is undertaken with the intent of explaining how cognitive 
activities are actually accomplished, what resources are brought to bear, how these are 
coordinated with one another, what changes or adaptations occur, and so on.  The 
analysis of activity provides a basis for inferring what must be happening in the internal 
cognition of individuals for the overall system to function. 

For the cognitive ethnography of time-telling instruction, data were gathered in 
two settings: in 1st, 2nd, and 3rd grade classes in an inner-city church school in San Diego, 
California, with a working class, mixed-ethnic student population; and in a 2nd grade 
class in a private elementary school in La Jolla, California, with a wealthier, 
predominantly Caucasian student population.  In each of the classes I observed 
mathematics lessons at various times throughout the 2002-2003 school year and made 
digital video recordings of lessons related to time-telling, collected materials used, 
observed student learning activities, and asked teachers and students about their work.  I 
also conducted a series of individual interviews with 3rd grade students where I posed 
various time problems using both analog and digital clock displays, from naming the time 
to determining the interval to some past or future time.  Here I asked students to explain 
the reasoning behind their solutions, and I observed their talk and gestures for clues to 
their conceptualization.  The interviews were loosely structured, probing the limits of the 
student’s time-telling, problem-solving, and explanatory abilities. 

Episodes of classroom instruction in time-telling and student interviews were the 
primary sources of data for the present analysis of image schemas in clock-reading.  

                                                 
1 A related example suggested by an anonymous reviewer is how object collections support the 
conceptualization of discrete whole numbers (counting numbers) while the number line supports the 
conceptualization of real numbers in their limitless density. 
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Details about method, including sample lesson episodes, transcripts incorporating talk 
and gestures, and cognitive linguistic analysis, can be found in Williams (2004, 2006b). 

IMAGE SCHEMAS IN CLOCK-READING 

In our consideration of clock-reading we will focus on three image schemas—PROXIMITY, 
CONTAINER, and SOURCE-PATH-GOAL—and the role they play in time-telling.  The PART-
WHOLE and CENTER-PERIPHERY image schemas are also involved in reading the clock 
dials: hours, quarter-hours, minutes, or seconds.  Discussion of the dials and the role 
played by PART-WHOLE and CENTER-PERIPHERY structure in clock-hand pointing can be 
found in chapter 4 of Williams (2004).  Other image schemas, such as CYCLE, are clearly 
of central importance to time-telling but go beyond the scope of the present paper. 

The three spatial image schemas to be discussed are shown in Figure 1.  
Following a tradition in cognitive linguistics dating back to Langacker (1987), the object 
that has focal prominence—that is foregrounded as the locus of attention—is labeled the 
trajector (TR), while the object of lesser prominence that the trajector stands in relation to 
is labeled the landmark (LM).  In the PROXIMITY image schema, the trajector is located in 
the vicinity of the landmark, in what—if the landmark were animate—might be the 
landmark’s immediate domain of control.  Proximity is an embodied sense of nearness, of 
impending interaction or near-unity, which diminishes with increasing distance from the 
landmark, giving it a scalar quality.  In the CONTAINER image schema, the trajector is 
located within a two- or three-dimensional region of space bounded by the landmark.  We 
say that the trajector is contained within the landmark or that the landmark contains it.  
The boundaries of the landmark may be demonstrably real, as when a marble is contained 
in a jar, or they may be conceptually projected, as when a bee flies into the garden.  The 
SOURCE-PATH-GOAL image schema provides the structure of a basic motion event: the 
trajector begins moving from a location designated as the source, passes through a series 
of contiguous locations that constitute a path, and completes its motion at a location 
designated as the goal.  At any given moment, the trajector occupies some position along 
the path from source to goal.  The path may be factive—the actual path of a moving 
object—or it may be fictive (Talmy, 1996/2000), as in the sentence, “The fence runs from 
the house to the barn,” where the fence does not move, but motion is nevertheless 
experienced as subjective scanning along the fence in the visual scene or in the mind’s 
eye.  Each of these three image schemas—PROXIMITY, CONTAINER, and SOURCE-PATH-
GOAL—plays a pivotal role in a particular type of time-telling, as described below. 

 
<Insert Figure 1 here> 
 

Landmark Time 

Landmark time is the most basic time, the earliest in the development of time-telling 
practices and the first learned.  It is the occurrence of a reference event: the intersection 
of a shadow with a mark on a floor, wall, stick, or sundial, or of a clock hand with a tick 
mark or number on the clock face.  In early time-telling, the intersection of a shadow with 
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an inscribed mark corresponded to what will here be called a landmark hour, one of the 
twelve equally spaced reference events from sunrise to sunset, mid-day being the 6th 
hour.  The duration between these reference events varied with the seasons, so that 
conceptually an hour was unlike the clock hour we know today (Williams, 2004).  Many 
centuries later, mechanical clocks established hours of fixed duration, leaving only noon 
anchored to the sun.  Noon became the new origin/endpoint of the 12-hour cycle, its 
significance signified by the clock hands pointing directly upward.  The later innovation 
of time zones and daylight saving time disrupted even this correspondence.  Landmark 
time survives today in “o’clock” times, literally time “on the clock” as opposed to solar 
time.2  The “o’clock” times are the first times that children learn to read on the analog 
clock and to associate with life activities like mealtimes and bedtimes, giving early 
meaning to clock time. 

When children begin to read landmark hours, they may recognize right away that 
the long hand points up to the 12, but to read the time they need to focus their attention 
on the short hand and the number it points to, as shown in Figure 2.  Reading the 
landmark hour involves the PROXIMITY image schema closely associated with pointing in 
human discourse: a person points to draw attention to a referent, cuing the addressee to 
scan along the trajectory of the point in search of a suitable reference object; where 
multiple relevant objects are present, the one nearest the trajectory of the point is taken as 
the most likely referent.  On the clock face, when the long hand is at the 12, the short 
hand points toward a particular numeral3; this is the taken as the number of the landmark 
hour.  Teachers reinforce this association by telling students that the hour is the number 
the short hand “points to.”  If the long hand is in the vicinity of the 12, the landmark hour 
is taken as the number closest to the trajectory of the short hand’s point, using the 
PROXIMITY image schema conventionally associated with pointing.  Once this number has 
been selected (say 3, for example), the time is conventionally reported as “<number> 
o’clock” (“three o’clock”) or, in the case of approximation, as “about <number> 
o’clock” (“about three o’clock”).  We see that reading “o’clock” times retains the historic 
sense of naming distinct landmarks and that proper reading of the landmark hour depends 
on the PROXIMITY image schema. 

 
<Insert Figure 2 here> 
 

Relative Time 

Once landmark times are established, a child quickly gains a sense of the long hand 
approaching the 12 or moving past the 12, so that it can be “almost <number> o’clock” 
or “just after <number> o’clock,” and so on.  This provides the start of relative time-
telling. 

Relative time is a historical elaboration on landmark time, first with quarter hours 
and later using minutes once the hour was divided into 60 “small parts,” as described by 

                                                 
2 More about the cultural history of time-telling can be found in Barnett (1998); the relation between this 
history and changing conceptualizations of time is explored in chapter 3 of Williams (2004). 
3 Interpreting a clock hand as pointing involves additional image-schematic structure discussed in Williams 
(2006a). 
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Barnett (1998).  Relative time states the time in relation to a landmark, as either past or 
till the landmark hour.  Examples are “a quarter to one” or “ten past three.”  Here, 
because the landmark is used as a cognitive reference point, we will call it a reference 
hour to distinguish its use in relative time-telling.  To read relative time, both clock hands 
must be attended to and read in relation to one another.  For the long hand, attention 
focuses on reading the relation between the hand’s current position (where it points on 
the dial; for brevity, we will simply refer to the tip of the long hand as the trajector) and 
its reference position at the top of the hour when it points to the 12 (the landmark).  When 
the relation is read as “past,” the reference hour is the preceding landmark time 
(“<number> o’clock”); when it is “till,” the reference hour is the upcoming landmark 
time. 

While proximity still plays a role in choosing whether to read the relation as 
“past” or “till,” properly reading the reference hour requires a conceptual shift to the 
SOURCE-PATH-GOAL image schema as shown in Figure 3.  Recall that the SOURCE-PATH-
GOAL image schema structures the conceptualization of a full path of motion.  A clock 
hour begins with the tip of the long hand (the trajector) at the top of the clock on the 12, 
which is the SOURCE.  As the hour unfolds, the trajector moves steadily around the dial 
clockwise, along a predefined PATH, until it reaches the 12 again; this same location is 
now construed as the GOAL.  On an actual clock, the long hand and short hand do not 
move independently.  Instead, a geared mechanism locks in the invariance essential to 
time-telling: as the tip of the long hand (TRlong) moves from the 12 (SOURCElong) clockwise 
around the clock to the 12 (GOALlong), the tip of the short hand (TRshort) moves around the 
clock clockwise from one number (SOURCEshort) to the next (GOALshort).  The movement of 
the long hand around the dial is linked both mechanically and conceptually to the 
movement of the short hand from one number to the next.  The link between these two 
paths of motion means that for “past” time readings the reference hour must be the source 
of the short hand motion (SOURCEshort), as in “a quarter past three,” whereas for “till” 
readings it must be the goal of motion (GOALshort), as in “a quarter till four.”  This is true 
regardless of proximity: “forty minutes past ten” is referenced to the 10 even though the 
short hand is closer to the 11.  In practice, people commonly refer times to the nearest 
landmark, reporting times during the first half of the hour as “past” and times during the 
second half of the hour as “till.”  If a clock reader always follows this convention, then 
simply reporting the nearest number—relying on proximity—will produce correctly 
named times even where the reader lacks awareness of the conceptual relationship 
between the two hands, a problem to be discussed below.  Only when the long hand is 
furthest from the 12—when it points to the 6 and is therefore equidistant on the “past” 
and “till” sides—does it become impossible to rely on proximity.  Here linguistic 
convention dominates: the British report the time as “half past three” while the Germans 
report it as “halb vier” (“half four”).4 

                                                 
4 Actually, the situation is somewhat more nuanced.  Along with “halb vier” (“half four”), German speakers 
also report a quarter past three as “ein Viertel vier” (“one-quarter four”) and a quarter till four as “drei 
Viertel vier” (“three-quarters four”).  This way of conceptualizing the time combines SOURCE-PATH-GOAL 
structure (the motion of the long hand through one clock hour) with endpoint focus (reference to the GOAL) 
and PART-WHOLE structure (reporting the proportion of the PATH that has already been traversed).  The hour 
may also be construed as a container being filled and the long hand as moving along a scale (a SOURCE-
PATH-GOAL structure) from empty to full, with its present position marking the current fill level.  A clock 
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<Insert Figure 3 here> 
 

Absolute Time 

More accurate mechanisms of time-keeping enabled greater precision in time 
measurement, supporting the naming of times as a precise number of hours, minutes, and 
even seconds (literally, “second small parts”).  These can be written conventionally in 
numeric form (e.g., as ‘3:30’).  Advances in electronics have made digital time displays 
so ubiquitous that it has become commonplace to name times precisely as, for example, 
“three fifty seven,” furthering a trend in America away from relative time-telling to 
naming the time precisely in absolute form. 

For absolute time, the hour is no longer a landmark or reference point.  Instead it 
is the current hour, the first portion of a time stated in units of hours, minutes, and 
(optionally) seconds.  Reading the current hour on the analog clock requires yet a 
different image schema, the CONTAINER schema, as shown in Figure 4.  If the short hand 
points to a location between 3 and 4, the current hour is “three,” followed by some 
number of minutes (and possibly seconds) read using the other clock hand(s), as in “three 
thirty.”  Consider what happens when the time is 3:57: the tip of the short hand is in close 
proximity to the 4—almost coincident with it—making 4 clearly the number the short 
hand points to.  But when reading the hour for absolute time, proximity is irrelevant and 
often quite misleading.  As long as the short hand is contained within the region of space 
bounded by its position at three o’clock and its position at four o’clock, the hour 
continues to be “three.”  Only when the short hand arrives fully at the 4 and begins 
crossing into the next region does the hour change. 

Notice that the landmark “o’clock” times remain present in both relative and 
absolute time-telling but play different roles.  In relative time-telling, the landmarks serve 
as reference points: the source or goal to which the present time is relationally referenced.  
In absolute time-telling, the landmarks are boundaries of containers, the interiors of 
which are conceptually associated with particular hours.  Crossing the boundary changes 
the current hour, making boundary crossing a highly salient event.  Despite the salience 
of boundary crossings, no conceptualization of motion is required to read absolute time: 
the current hour is determined solely by the location of the trajector in one container or 
another.  And in sharp contrast to relative time, the hours and minutes for absolute time 
can be read independently without particular regard to the clock hands’ relation to one 
another.  Absolute time is static, identifying the present moment, while relative time is 
dynamic and relational, expressing the interval between the present moment and some 
past or future reference time. 

 
<Insert Figure 4 here> 
 

                                                                                                                                                 
reader need not conceptualize the situation this richly in order to name the time correctly, a topic taken up 
in the section on emerging expertise. 
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Comparison of Time Formats and Image Schemas 

The time formats and their associated image schemas are summarized in Table 1.  The 
table shows the close correspondence between the linguistic format for reporting the time 
and the preferred order of looking at the dials embedded in the clock face, once the clock 
has been initially glimpsed.5  For landmark time, only the hour is reported (“five 
o’clock”), so only the hour dial—the short hand, numerals, and major tick marks—needs 
to be attended to closely.  The clock hand configurations for landmark times soon come 
to be recognized and named directly, making even the numerals superfluous.  For relative 
time, the long hand is typically focused on first; whether the time interval is read as a 
half- or quarter-hour or as a span of minutes depends on the position of the long hand and 
the readings it affords, as well as cultural convention.  The long hand positions at 6, 3, 
and 9 become recognized as landmarks for “half past,” “quarter past,” and “quarter till,” 
respectively, and with practice other five-minute times come to be recognized and named 
directly as “ten past,” “twenty past,” and so on (later even as “ten till,” “twenty till,” etc.), 
creating an array of secondary and tertiary landmarks.  For absolute time, children who 
are learning to tell time typically read the hour first and then count by fives and/or ones to 
read the minutes; more experienced time-tellers count the minutes from the nearest five-
minute mark (in studies of adult by Case, Sandieson, and Dennis, 1986).  Reading the 
dials in a different order and then manipulating the information into another format is 
possible but places additional loads on memory and processing.  This is perhaps most 
likely to occur when there is some conflict between the demands of the situation, the 
affordances of the particular clock hand configuration, and/or habitual ways of telling the 
time. 

 
<Insert Table 1 here> 
 
Most importantly for our purposes, Table 1 shows the use of three distinct image 

schemas for reading the hour portion of the time in the three different formats: the 
PROXIMITY image schema for reading the landmark hour in landmark time, the SOURCE-
PATH-GOAL schema for reading the reference hour in relative time, and the CONTAINER 
schema for reading the current hour in absolute time.  Because time-telling is a complex 
skill that takes children years to master, the order in which different forms of time-telling 
are learned can affect the use and misuse of particular image schemas in clock-reading.  
This is the subject of the next section. 

LATENT ERRORS IN CHILDREN’S CLOCK-READING 

In a study of children’s clock-reading strategies, the most commonly observed error was 
misreading the hour, and this error occurred exclusively when the long hand was on the 
                                                 
5 Eye-tracking studies by Bock, Irwin, Davidson, and Levelt (2003) confirm that participants do indeed 
alter their order of looking at the clock hands to conform to the requested format for reporting the time.  
They also found in two of their experiments that a single participant, an American English speaker, 
persisted in viewing the hour hand first when asked to report relative time, showing both the American 
penchant for absolute time (confirmed in a separate experiment by Bock et al.) and the ability to mentally 
manipulate a time reading into a different format. 
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left side of the clock (Siegler & McGilly, 1989, p. 209).  The analysis of image schemas 
in clock-reading presented above predicts this effect; in doing so, it also reveals a deeper 
concern about learning complex skills in mathematics and other domains.  We begin by 
considering the order in which time-telling skills are learned because this lays the 
groundwork for predicting the pattern of errors. 

The Order of Learning to Read Times on an Analog Clock 

Children learn time-telling over a period of several years, beginning in the preschool ages 
and continuing through the elementary grades.  Table 2 summarizes findings from three 
studies of American children’s clock-reading at ages ranging from 4 to 10 years 
(Springer, 1952; Friedman & Laycock, 1989; Siegler & McGilly, 1989).  The table shows 
a consistent pattern of development.  Children begin with the landmark hour times, and 
by age 7 all the children in the studies have mastered “<number> o’clock.”  The next 
times to be mastered are the secondary landmarks: the half-hour times, which may be 
read either as “half past <number>” or “<number> thirty”; the studies do not identify 
which form was used.  Next come the 15-minute times, also without distinction between 
“quarter past <number>” and “<number> fifteen,” followed closely by the 5-minute 
times.  Last to be mastered are the 1-minute times; by age 10 (the highest age in the 
studies), the 1-minute times are read with 80% accuracy.  In general, the studies make no 
distinction between relative and absolute time-telling, noting only correctness.  More 
recent work by Bock, Irwin, Davidson, and Levelt (2003) provides evidence of 
significant cultural differences in preferences for expressing time, with Dutch 
undergraduates strongly favoring relative time while American undergraduates express 
time almost exclusively in absolute form.  As we have seen in the image schema analysis, 
differences in the form for reporting the time imply differences in how the reading was 
accomplished. 

 
<Insert Table 2 here> 
 
Classroom observations from Williams (2004) confirm this general outline while 

filling in considerable detail.  The progression of learning to read clock times observed in 
the ethnographic study is shown in Figure 5.  Although some landmark forms of relative 
time (half past and quarter past/till) were introduced early, an emphasis on relative time 
came only after absolute time had been reasonably mastered.  The progression started 
with reading “o’clock” times and associating these with daily activities (mealtimes, 
bedtime, etc.).  Half-hour times were introduced next, and although motivating 
explanations were offered—the short hand being halfway between two numbers (for 
“half past”), or 30 minutes being half an hour (for “<number> thirty”), etc.—students 
were expected to name the times directly, without counting on the clock, as secondary 
landmarks to the “o’clock” times.  Dividing the clock face into quarters appeared at all 
levels from 1st through 3rd grade; here again, motivating explanations were initially 
provided and then followed by practice naming times directly as “quarter past” or 
“quarter till,” making these tertiary landmarks.  Calling these  landmarks by their 
absolute names—“<number>  fifteen” or “<number> forty-five”—involved counting by 
fives on the clock, which led naturally to naming other 5-minute times; with practice 
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these also come to be recognized directly as landmarks.  Counting on by ones from a 
known or established 5-minute time produced the 1-minute times.  All of these were 
practiced at intervals during math lessons from kindergarten to 3rd grade. 

In 3rd grade, the teacher led the students through a review of the meaning of 
“quarter past” and “quarter till” as she introduced other forms of relative time-telling, 
including time till the upcoming hour (e.g., “twenty till <number>”), time past or till the 
hour, and time till some future reference time (say, an appointment at 10:15).  “Time till” 
problems were solved by reading the absolute time and subtracting the minutes from 60; 
students were encouraged to check their answers by counting by fives and ones from the 
12 back (counterclockwise) to the current position of the long hand.  Students had much 
more difficulty solving time problems that crossed the hour boundary, such as 
determining the number of minutes from 1:35 to 2:10.  Successful students decomposed 
these problems into time till the hour plus time after the hour, or they counted around the 
clock from one position to another when both were 5-minute times; some recognized 
common intervals such as the half-hour (180-degrees across) from 9:45 to 10:15. 

 
<Insert Figure 5 here> 
 

Overgeneralization of Proximity for Reading the Hour 

Given this background, how does the image schema analysis explain the most pervasive 
error in children’s clock-reading?  Siegler and McGilly (1989) found that fully one-third 
of 8- and 9-year-olds’ clock-reading errors were misreading the hour when the long hand 
is on the left side of the clock, for example, misreading “three fifty” as “four fifty.”  The 
cause appears to be overgeneralization of the PROXIMITY image schema commonly 
associated with pointing.  The explanation based on image schema analysis goes like this: 
Children learn to read the landmark “o’clock” times first and are taught that the hour is 
the number the short hand “points to.”  Pointing in everyday life is associated with 
proximity: the referent is the first suitable object encountered when scanning along the 
trajectory of the point—in other words, the one in closest proximity (Williams, 2006a).  
Children are therefore likely to continue to attend to proximity when they view the short 
hand while reading other types of clock time. 

What happens when children overgeneralize the PROXIMITY schema to reading 
absolute and relative times?  The answers are shown in Figures 6 and 7.  Each figure 
shows the use of the erroneous PROXIMITY image schema on the left and of the correct 
image schema (CONTAINER or SOURCE-PATH-GOAL) on the right.  The hour portion of 
each reading is boxed, with a diagram showing how the image schema produces a name 
for the hour and whether that name is correct (incorrect names are marked with an “X”).  
Figure 6 shows overgeneralization of the PROXIMITY schema when reading absolute time, 
the form preferred by Americans and emphasized in early time-telling instruction.  Using 
the wrong image schema, children name absolute times correctly when the long hand is 
on the right side of the clock (three fifteen) and incorrectly when the long hand is on the 
left (four forty-five).  The image schema analysis accounts for the sudden emergence of 
clock-reading errors in the latter half of the hour, and it predicts that these errors should 
increase as the time approaches the upcoming hour, bringing the short hand into closer 
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proximity with the next number on the dial.  Figure 7 shows a similar overgeneralization 
of the PROXIMITY schema to reading relative time.  In this case, times can be named 
correctly using the wrong image schema whether the long hand is on the right (quarter 
past three) or left (quarter till four) as long as children follow the convention of always 
referencing the time to the nearest hour (past or till).  Here apparently correct 
performance masks serious misunderstanding.  With overgeneralization of the PROXIMITY 
schema, a less conventionally named time such as “fifty past ten” would seem 
nonsensical because without SOURCE-PATH-GOAL image-schematic structure there is no 
conceptual relation linking clock hand motions to their respective sources and goals. 

 
<Insert Figures 6 and 7 here> 
 
What is striking about Figures 6 and 7 is that in three of the four conditions 

(absolute-right, relative-right, relative-left), children name times correctly using the 
wrong image schema, while in only one condition (absolute-left) do they fail.  This is 
75% accuracy, widely considered an acceptable standard of performance, one that would 
earn a grade of “C” (satisfactory) on the A-F grading scale used in most American 
schools.  The children’s apparent competence masks a fundamental conceptual error that 
can persist undetected and unabated. 

The problem of being drawn into the natural association with proximity is readily 
apparent in classroom observations of time-telling lessons.  Figure 8 shows a brief 
excerpt from a 1st-grade lesson on reading “six forty-five.”  Here the clock face shows the 
long hand on the 9 and the short hand nearly touching the 7.  The teacher says, “It’s not 
seven forty-five,” and as she says “not seven” she traces a curved trajectory from the tip 
of the short hand to the 7, explicitly depicting the proximity associated with pointing that 
she is verbally negating.  She goes on to give the reason: “cause it’s not on the seven 
yet,” which would be the landmark that marks the boundary crossing into the next hour 
region.  She reiterates the proper time, “it’s six forty-five,” and as she says “it’s six” she 
traces a line from the center of the clock down to the 6, the defining boundary of the 6 
region.  Her two quick gestures enact the key conceptual distinction in how the children 
should view the clock face: which image-schematic structure should be imposed there to 
produce the correct hour reading.  The teacher’s gestures and talk negate proximity while 
highlighting the boundaries of the region that contains the short hand; so long as the short 
hand is anywhere in the space between 6 and 7, the current hour is “six.”  In this way, the 
teacher guides the learners in seeing the clock in a particular way that supports a 
particular form of time-telling.  More detail about how the teacher’s gestures and talk 
guide learners’ conceptualization can be found in Williams (2008a, 2008b), including 
how gestures add image-schematic structure to the conceptualization. 

 
<Insert Figure 8 here> 

 

Overgeneralization of Containment for Reading the Hour 

It was noted earlier that Americans favor absolute time and that classroom observations 
confirm this finding.  If children are learning absolute time-telling thoroughly before 



Williams  Image Schemas in Clock-Reading 

 13 

devoting much attention to relative time, we might expect some interference from the 
already-mastered form.  We have already seen that when children read absolute times in 
the latter part of the hour, they are encouraged to focus on the boundaries that separate 
one hour region from another.  What happens if they overgeneralize this form of hour 
reading into relative time?  The answer is shown in Figure 9, with improper use of the 
CONTAINER image schema on the left and proper use of the SOURCE-PATH-GOAL image 
schema on the right.  Again we see that when the wrong image schema is used, the time 
is named correctly when the long hand is on the right (quarter past three) and incorrectly 
when it is on the left (quarter till three). 

 
<Insert Figure 9 here> 
 
If we put all of these image schema overgeneralization errors together in Table 3, 

a clear pattern emerges.  In the table, “yes” indicates correctly named times while “no” 
indicates incorrectly named times.  The labels “error” and “latent error” identify 
conceptual misunderstandings, but while those labeled “error” lead to incorrectly named 
times, those labeled “latent error” go unnoticed.  What is striking is that in two thirds of 
the cases where a systematic conceptual error is present—where the conceptualization of 
the situation is fundamentally flawed—the error persists undetected.  In only one third of 
the cases does the conceptual error result in an incorrectly named time, and this happens 
to occur only when the long hand is on the left side of the clock.  Whether children 
overgeneralize proximity from its close association with pointing, which seems likely, or 
containment from extensive practice reading absolute times, the result is the same: an 
error rate of approximately 25% overall (perhaps less if proximity errors emerge only 
when the long hand is quite close to the upcoming number), with all errors occurring 
when the long hand is on the left side. 

 
<Insert Table 3 here> 
 
When children read the hour using the wrong image schema, success in time-

telling can break down suddenly, triggering a search for the cause of error in the 
particulars of the situation.  What is it about the second half of the hour that makes it 
harder to read than the first?  Why does crossing the 6 make a competent time-teller start 
to fail?  Perhaps students have more difficulty with larger numbers, or perhaps they 
experience confusion over the differently named hours for current and “till” times.  These 
are reasonable questions and hypotheses.  The problem is that they direct us to look for 
the source of error in circumstances that may simply have revealed the error, which turns 
out to be systematic.  This type of conceptual error can pervade the child’s time-telling 
while remaining largely unnoticed. 

In summary, the analysis of image schemas in clock-reading offers a 
parsimonious explanation for the clock-reading errors observed in the Siegler and 
McGilly (1989) study.  It also highlights the effects of the order of learning, 
demonstrating how guidance at one stage produces conceptual difficulties at later stages, 
and it explains how latent conceptual errors lead to sudden breakdowns.  The advice so 
essential to reading landmark time, that the hour is the number the short hand points to, 
reinforces the natural focus on proximity that must later be ignored and replaced by a 
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sense of the short hand being contained within a bounded region to read absolute times 
and by awareness of the sources and goals of clock hand motion to read relative times.  
Early learning sets the stage for later learning, and existing conceptions are used to make 
sense of new experiences.  In this analysis, we have seen how prior learning can 
complicate new learning and how successful performance can mask serious 
misunderstanding. 

EMERGING EXPERTISE IN CONCEPTUALIZING CLOCK TIME 

What does the image schema account tell us about the conceptual changes associated 
with emerging expertise in time-telling?  We have already seen how becoming expert at 
reading the different kinds of times requires developing a repertoire of different ways of 
reading the short hand, each involving a different image schema, and recognizing when 
each way should be used.  Expert time-tellers read the short hand quickly and flawlessly 
whether they are reporting landmark, relative, or absolute time.  Novices develop this 
ability in stages, with changes in image-schematic structure marking the developmental 
progression, and with failures to change image schemas leading to misunderstanding and 
error.  But what about conceptual changes associated with reading a single type of time? 

Figure 10 provides an illustration of emerging expertise in reading “quarter past” 
times, based on the cognitive ethnography of time-telling instruction (Williams, 2004).  
Beginning clock-readers, even when given an explanation for why the time is called “a 
quarter past,” succeed most readily by simply associating the label “a quarter past” with 
the long hand’s orientation: pointing horizontally to the right at the 3.  In a 1st grade 
lesson introducing “quarter past,” for example, the teacher briefly introduced the term “a 
quarter,” showed the students how to divide the clock face into quarters, and then had the 
students practice naming “quarter past” times with different hours (see Williams, 2006b, 
for the structure of the lesson).  This created a situation similar to when the students first 
learned to read the landmark “o’clock” times: the students focused their attention on the 
short hand, concentrated on reading the hour correctly, and treated the long hand’s 
position at the 3 as a prompt for saying “quarter past,” just as they learned to say 
“o’clock” when the long hand pointed to the 12.  The association was reinforced through 
repetition, and the “quarter past” times were not mixed with other clock times6 (although 
students did learn to name the times as “<number> fifteen.”  At this stage, no 
understanding of the meaning of “a quarter past” was required to perform successfully.  
This conceptualization is represented by the diagram on the far left in Figure 10. 

 
<Insert Figure 10 here> 
 
Motivating explanations provided in lessons on reading quarter-hour times 

typically involve dividing the clock face into halves and then into quarters, as happened 
briefly in the lesson described above.  In some classes, children are given paper clock 
faces and instructed to draw a line from the 12 down to the 6 and then another line from 

                                                 
6 Students did learn to rename “quarter past” times as “<number> fifteen.”  See Williams, 2008a, for 
detailed analysis of how the teacher’s talk and gestures systematically constructed two different ways to 
conceptualize the same clock state, each with its own distinct image-schematic structure.   
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the 9 across to the 3.  When the long hand aligns with any of these dividing lines, it 
stands in one of the canonical positions that come to be known as “o’clock,” “a quarter 
past,” “half past,” or “a quarter till.”  Children are often instructed to color in the upper 
right quadrant and label it “a quarter past.”  When the long hand points to the 3, it forms 
one boundary of this quadrant, the other being the landmark “o’clock” position.  Children 
who associate the label “a quarter past” with this shape and who recognize the shape as 
the upper-right quarter of a canonically divided circle come to have the somewhat more 
sophisticated understanding represented by the second diagram from the left in Figure 10.  
Here the conceptualization incorporates PART-WHOLE image-schematic structure: the 
clock face is seen as composed of four fractional parts arranged in a standard 
configuration.  This conceptualization is static, involving nothing more than the state of 
the clock and the arrangement of its parts.  The long hand is conceptualized as the 
boundary of a shape rather than as a moving object. 

An even more sophisticated understanding is represented by the third diagram in 
Figure 10.  Here the actual dynamics of clock-hand motion have been added to the 
conceptualization.  The tip of the long hand—the trajector—begins its hourly journey at 
the 12, and when it arrives at the 3, it has traveled one fourth of the way along its path 
around the clock.  In other words, it has traversed one quarter of the path from source to 
goal, and it is therefore a quarter past the previous hour.  When the trajector reaches the 
6, it will be half past the hour.  When it reaches the 9, it will have traversed three quarters 
of its hourly path around the clock and will have one quarter left to traverse; hence it will 
be a quarter till the upcoming hour.  This depth of understanding comes from 
superimposing SOURCE-PATH-GOAL image-schematic structure onto the PART-WHOLE 
structure of the clock quarters.  The motion of the long hand around the clock can then be 
linked conceptually to the motion of the short hand from number to number, binding the 
different parts of a relative time reading. 

This more expert-like conceptualization can be enriched still further, associating 
path segments with time intervals as shown on the right in Figure 10.  The full path 
corresponds to one hour, which is 60 minutes.  This entails a spectrum of clock span and 
time interval relationships: that one fourth of the path corresponds to 15 minutes, one 
third to 20 minutes, and so on.  A quarter past the hour is therefore equivalent to 15 
minutes past the hour.  Each movement of the long hand from one number to the next 
then represents the passage of an additional 5 minutes because each of these movements 
covers one twelfth of the total 60-minute path.  When the long hand points to the 3, the 
elapsed time since the previous hour is three times five minutes, providing the conceptual 
link that explains why we look at the 3 and call it “fifteen.”  All of these inferences result 
from the complex image-schematic structure of the expert conceptualization: linking two 
paths of clock-hand motion with several part-whole relations that include fractional parts 
of a circle, path segments as proportions of a full path, and the division of duration into 
conventional units of hours and minutes in our cultural system of time measurement.  If 
someone is catching a train at 11:05 and the clock displays ten minutes till eleven, then it 
is a quarter-hour till the departure time.  This can be read directly from the span between 
the present and future positions of the long hand on the clock face, or it can be computed 
as 10 till the hour plus 5 past the hour, which equals 15.  A complex of rich image-
schematic structure provides the system of conceptual interrelationships that enables this 
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expert reasoning—reasoning that is unsupported by the simpler conceptualizations to the 
left of Figure 10.  

All of these ways of conceptualizing “a quarter past” yield the correctly named 
first part of a relative time reading when the long hand points to the 3.  What 
distinguishes the more sophisticated understandings is their rich array of image-schematic 
structure, incorporating diverse conceptual elements related to reading clock times—
fractional parts of a circle, paths of motion, proportions of paths traversed, number lines, 
hierarchical units of time, and so on—all richly interconnected to support reasoning in 
everyday situations and adaptability to novel circumstances.  The image schema analysis 
for “a quarter past” shows how this kind of understanding can emerge invisibly, without 
failure or disruption in everyday performance.  Considered together with the analysis of 
different image schemas for reading the hour, what emerges is a portrait of expertise as 
involving more sophisticated conceptualizations with richer image-schematic structure 
and alternative conceptualizations with different image-schematic structure, with the 
flexibility to switch conceptualizations guided by a sense of appropriateness that the more 
sophisticated conceptualizations help to provide. 

DISCUSSION 

Conceptualizing Mathematical Ideas 

In everyday life, mathematics is treated as a collection of conventional methods for 
solving familiar problems—in short, as procedural.  As an intellectual activity, however, 
mathematics is deeply conceptual: capturing relations and manipulating them, whether to 
prove or disprove conjectures, to solve real-life problems, or to explore the realm of 
possibilities.  More than any other discipline, mathematics tries to distill entities and 
relations to abstract form, bleaching out imageable content while preserving image-
schematic structure as a basis for reasoning.  Yet when called upon to think 
mathematically, a learner must conceptualize the given situation in a particular way, and 
the image schemas that structure this conceptualization will determine what inferences 
are available and what outcomes likely. 

It is apparent that mathematical ideas can be conceptualized in more than one 
way, with differences in image-schematic structure yielding different insights.  A line 
segment can be conceptualized as a set of points (PART-WHOLE) or as the path defined by 
a moving point (SOURCE-PATH-GOAL), two very different ways of thinking about the same 
mathematical entity.  Mathematical ideas can also be conceptualized with varying 
degrees of richness or detail: “a quarter past” can be simple orientation, part-whole 
structure, part-whole with a path of motion, or a complex of part-whole structures and 
interconnected paths of motion.  The rich image-schematic structure of more 
sophisticated conceptualizations supports a broader range of possibilities for reasoning, 
exploring relations, and drawing conclusions; in other words, it makes more things 
seeable and knowable.  The image-schematic structure of initial conceptions, by contrast, 
can be quite impoverished and can even prove misleading when new problems are 
encountered, as when reading landmark times by proximity disrupts the reading of 
absolute times where a different way of interpreting the short hand’s relation to the clock 
face is required.  Misunderstandings can arise from different conceptualizations of the 
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situation, even where each may be valid in its own right:  a teacher and a learner, or two 
learners, can look at the same configuration of hands on a clock face and “see” something 
different there, not understanding why the other does not see what they do. 

Effects of the Sequence of Learning 

Among other things, the present study of image schemas in clock-reading illustrates how 
well-intentioned advice at early stages of learning can produce misconceptions at later 
stages, leading to sudden breakdowns in performance.  To take another mathematical 
example: a teacher tells a child that to find the difference between two numbers “you start 
with the larger number and take away the smaller number,” preserving the image-
schematic logic of object collections.  This turns out to be great advice for the initial 
learning of subtraction, just as telling the child that the hour is “the number the short hand 
points to” is great advice for helping the child correctly name “o’clock” times.  Later, 
though, the teacher may be left scratching her head when the child claims that 35 minus 
29 equals 14, a type of subtraction error observed in a 2nd grade class while conducting 
the clock-reading study.  Following the teacher’s advice, the child has solved the problem 
in a logically consistent way: 3 minus 2 equals 1, and 9 minus 5 equals 4.  This is akin to 
the child reading 6:45 as “seven forty-five” because the short hand points to the 7.  The 
source of the breakdown lies in a previous stage of learning where a particular way of 
conceptualizing the situation produced success at solving the class of problems at hand: 
single-digit subtraction or reading landmark times.  At a later stage, this way of 
conceptualizing the situation interferes with the conceptualization needed to solve a new 
class of problems: two-digit subtraction or reading absolute times.  This is not to suggest 
that the initial advice was flawed; it was in fact exactly what was called for at that stage 
of learning, given the conceptual basis for the learner’s present understanding: 
manipulating object collections (for subtraction) or locating landmarks (for naming clock 
times).  More expert thinking will involve additional image-schematic structure, such as 
PART-WHOLE relations for place values, or alternative image-schematic structure, such as 
SOURCE-PATH-GOAL relations for viewing subtraction as motion on a number line.  These 
call for different advice—advice that might contradict an earlier way of thinking.  
Because learners at various stages of advancement conceive of a situation in diverse 
ways—with varied richness, complexity, and appropriateness of image-schematic 
structure—teachers must tailor their advice to each learner’s thinking.  An utterance or 
gesture that helps one learner to an insight might do nothing for another or, worse, lead to 
further confusion.  In this regard, instruction is always a highly situated activity.7 

                                                 
7 An anonymous reviewer rightly points out that it is not only the sequence of learning and guidance that 
shapes the use of particular image schemas but also experience with certain kinds of tools.  Children’s use 
of spinners with board games, for example, would provide good support for using the container schema to 
read the hour.  Whereas spinners have clearly demarcated boundaries, color-coded regions, and numeric 
labels centered in each region, clock faces require children to mentally impose boundaries and to relate 
each region to a numeral on its periphery.  Even with these challenges, the idea that the clock hand 
indicates the hour by containment within a region should carry over.  These are precisely the kinds of 
embodied experiences a teacher can draw upon to help students learn to conceive of a new situation in 
relevant ways, but only if the teacher knows that learners have had these kinds of experiences and senses 
the commonality in image-schematic structure that would make one experience a useful resource for 
understanding another.  Where such experiences are lacking, a dynamic animation could depict the desired 
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Changes in Understanding 

The study also demonstrates how those who perform capably can harbor quite different 
levels of understanding and how these understandings can change unnoticeably.  Students 
can learn to perform the procedure for borrowing and regrouping when solving two-digit 
subtraction problems before they develop much understanding of the place-value system, 
just as they can learn to name relative times like “quarter past” with little awareness of 
the connection between the movements of the long and short hands.  Adding image-
schematic structure to a conceptualization provides an opportunity for insight: for 
discovering conceptual links and relations that can support reasoning in novel situations.  
A firm grasp of the PART-WHOLE structure of place-value arithmetic, for example, enables 
the learner to adapt borrowing and regrouping to solve two-digit subtraction problems in 
base-7, just as grasping the complex PART-WHOLE and SOURCE-PATH-GOAL relations of 
clock times equips the learner to interpret novel or foreign time statements such as 
“quarter past ten thirty” or “five before half ten.”  Rich image-schematic structure carries 
the learner beyond familiar contexts, supporting transfer of learning to new situations. 

Applying Cognitive Semantics to the Study of Mathematical Learning 

These considerations about the nature of mathematical conceptualization illuminate a 
basic tension in instruction.  On the one hand, instruction is highly situated, with the 
choice of instructional maneuvers depending crucially on the particulars of the situation, 
the learners, their history, and how they conceptualize what they are confronting; on the 
other hand, there are familiar progressions of learning with known obstacles.  With 
regard to the latter, there may be value in bringing advances in cognitive semantics—in 
understanding the conceptual structures and operations that humans use to make sense of 
language and the world—to bear on thorny problems of mathematics teaching and 
learning.  Applying cognitive semantics to the study of classroom discourse can reveal 
variations in the way mathematical ideas are conceptualized, especially at different stages 
of learning, providing possibilities for more informed instruction.  In doing so, we need 
to pay attention to how prior learning structures the way learners conceptualize new 
experiences in ways that both facilitate and interfere with proper understanding.  I have 
purposefully chosen the everyday practice of time-telling to illustrate the cognitive 
complexities involved in seemingly simple activities and the insights that might be gained 
from such study. 

Pioneering work in the cognitive semantics of mathematics is Lakoff and Núñez’s 
(2000) examination of the image schemas, conceptual metaphors (projections of image-
schematic structure), and conceptual blends (integrations of compatible image-schematic 
structure) that underlie many of our most fundamental mathematical ideas.8  Their 

                                                                                                                                                 
image-schematic structure, helping the learner to see the interrelations and to conceptualize the situation in 
this productive way. 
8 An example of a conceptual metaphor is the set of correspondences linking object collections to 
arithmetic discussed earlier.  Additional conceptual metaphors link arithmetic with geometry, and so on, 
providing image-schematic structure for conceptualizing abstract mathematical ideas (see Lakoff and 
Núñez, 2000, for many examples and discussion).   Examples of space-number conceptual blends include 
the number line and complex numbers, which integrate two-dimensional space with real/imaginary 
numbers (discussed in Fauconnier and Turner, 2002, pp. 270-274, and in Lakoff & Núñez, 2000, pp. 420-
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analysis of the discretization program in mathematics—the attempt to base all of 
mathematics on set theory and logic—illustrates the distinctions between the static 
conceptualizations implicit in formal set-theoretic definitions (for example, that a line 
segment is a set of points, or that a function is a mapping between x and y) and the 
dynamic conceptualizations that learners often find more intuitive (for example, that a 
line segment is the path defined by a moving point, or that y increases as x increases)—
and that teachers, despite their commitment to proper discretized mathematics, 
nevertheless employ when teaching mathematical ideas (see, e.g., Núñez, 2007).  We see 
something of the flavor of this static/dynamic divide in the conceptualization of “quarter 
past” as naming the upper right quarter-circle versus as naming the portion of the path 
already traversed by the long hand in its journey through the hour.  For teachers and 
learners of mathematics, it is not so much a matter of deciding which conceptualization is 
the right one (except perhaps for working out the details of a formal proof) as it is a 
matter of recognizing that there are different ways of conceptualizing mathematical ideas 
and that each makes some things apparent while rendering others invisible.  Part-whole 
conceptualizations support some inferences while motion-based conceptualizations 
support others.  Often the two are complementary, yielding different insights to the 
mathematical thinker and making both an integral part of the mathematics curriculum.  A 
greater sensitivity to image-schematic structure could help us be more aware of these 
conceptual shifts and contrasts. 

Implications for Teaching Mathematics 

Teachers of mathematics can take several lessons from the study.  One is to bear in mind 
that learners may perform successfully using conceptualizations that are highly 
impoverished or even erroneous.  Despite the best attempts to help learners understand 
the meaning of “a quarter past,” they may take away simply the idea that you say “a 
quarter past” when the long hand points at the 3.  That is certainly enough to get them 
started.  The real understanding may emerge later, after an extended period of successful 
performance, and actually performing the task is more likely to generate that 
understanding.  Another lesson is not to be too disheartened by sudden breakdowns but 
instead to see them as opportunities to probe for latent errors that have gone unnoticed.  
Seeking explanations for correct responses and posing unusual problems are two ways to 
probe for latent errors.  Another is to have students take on the role of teacher and then to 
pay attention not only to what they say but also to where they look and how they gesture 
as clues to how they are conceptualizing the situation.  The teaching role also gives 
students an opportunity to discover conceptual relations in their own explanations and 
thereby to enrich their understanding.  Yet another lesson is to be sensitive to order: to 
what students have been told and what they have been doing, to how this might determine 
how they will conceptualize a new problem situation, and to how that new situation 
might demand a shift in their conceptualization such as a different way of conceiving of 
the short hand’s role in reading the hour.  Focusing on the conceptual challenges inherent 
in new learning from the learner’s point of view can lead to more proactive teaching, for 

                                                                                                                                                 
432).  It’s important to bear in mind that the issue here is not how mathematical ideas are formally defined 
but how they are conceptualized—how the human mind is able to think mathematically and to learn and 
understand mathematical ideas. 
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example, to deliberately emphasizing the relation between long and short hand motion 
before teaching relative time so that students will be more likely to link source to source 
and goal to goal.  All of this advice describes what good teachers already do; what the 
image schema analysis adds is a new way of thinking about what is going on beneath the 
surface, a way that informs a more diagnostic kind of teaching. 

Implications for Research on Understanding and Adaptive Expertise 

For the learning sciences, the analysis presented here has implications for how we view 
the nature of understanding and of adaptive expertise.  The focus on image-schematic 
structure occupies a middle ground between two influential views of understanding, one 
emphasizing mental models (Gentner & Stevens, 1983) and the other emphasizing a 
“flexible performance capability” (Perkins, 1998).  Perkins criticizes the mental models 
view, arguing that learners may have the proper mental model yet not be able to operate 
with it and saying that many understanding performances, such as using language 
grammatically, do not seem to involve explicit mental models at all.  Perkins’ preferred 
definition of understanding as “the ability to think and act flexibly with what one knows” 
(p. 40) begs the question as to how one is able to think and act flexibly—on what basis?  
Perkins chooses to remain agnostic as to the basis and to focus instead on how a 
performance view of understanding impacts teaching and learning practices.  This 
approach is productive as far as it goes, but learning scientists would still like to know 
what makes such performances possible. 

From the perspective of embodied cognition, the image-schematic structure of 
conceptualizations appears to be at least part of the answer.  The analysis of image 
schemas in clock-reading demonstrates a basis for flexible performance that does not 
demand an explicit mental model.  The conceptualizations involved in reading the hour 
for different clock times are not explicit mental models in the sense of Gentner and 
Stevens (1983), such as imagining the operation of an electrical circuit as the flow of 
liquid through wires; they are instead more like grammatical constructions in that learners 
operate with them without consciously attending to the image-schematic structure that 
underlies their thinking.  While conceptualizations can certainly involve imagery and 
mental simulation, such as imagining a clock hand moving to or from a reference point, 
the image-schematic structure that underlies this simulation (SOURCE-PATH-GOAL, PART-
WHOLE, etc.)—and that gives it its explanatory power—remains implicit.  The example of 
emerging expertise in reading “a quarter past” also demonstrates how a learner can 
become able to act more powerfully and flexibly through enrichment of image-schematic 
structure rather than through a shift to a different mental model.  In some cases, shifting 
to a different conceptualization may be exactly what is called for, such as switching from 
an object collection to a number line view of subtraction; here the learner does not need 
to consciously model removing objects from a collection or moving to the left along a 
line, only to operate with the image-schematic structure that derives from these different 
kinds of experiences.  The image schema analysis even helps to explain why explicit 
mental models can be effective: imagining liquid flowing through wires is powerful 
precisely because it provides the image-schematic structure needed to support certain 
inferences.  Image schemas provide the relational and dynamic structure that enables 
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mental models to do their work, yet they also enable us to think without vivid imagery 
using a retained or emerging sketchy sense of the interrelations among elements.  

The same arguments provide at least a partial account for the kind of creative 
adaptability that characterizes adaptive expertise (Hatano & Inagaki, 1986; Bransford, 
Brown, & Cocking, 1999; Schwartz, Bransford, & Sears, 2005).  Here, as in Lakoff and 
Núñez’s analysis of mathematics, conceptual metaphor and blending could play a role in 
linking diverse experiences—projecting, merging, and enriching image-schematic 
structure—to provide a more powerful basis for engaging new situations. 

CONCLUSION 

This brief examination of image schemas in clock-reading has provided insight into 
aspects of learning that remain largely imperceptible: the bodily basis of how learners 
form conceptual understandings, the persistence of latent errors into later stages of 
learning, and the nature of conceptual changes that enable more expert-like performance.  
Learners are likely to operate with impoverished and even erroneous conceptualizations 
as they gain familiarity with new topics in mathematics, and these can lead to sudden 
breakdowns or disruptions of future learning.  Sensitivity to the image-schematic 
structure of different ways of thinking about problems, to the learning histories of 
individuals and the conceptual resources they bring to bear, and to the conceptual shifts 
required to tackle new classes of problems can help teachers anticipate difficulties, guide 
learners toward more appropriate or enriched conceptualizations, and probe for the 
reasoning and depth of understanding behind learners’ conclusions.  For the learning 
sciences, attention to the image-schematic structure of conceptualizations helps explain 
the efficacy of mental models and the conceptual basis for flexible performance, relating 
both to embodied aspects of human cognition.  With respect to the topic of this special 
issue, studies of how teachers and learners use their bodies when they think and 
communicate mathematically are likely to gain explanatory power when they relate 
observable bodily actions to the image-schematic structure and dynamics of ongoing 
conceptualization. 
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TABLES 

TABLE 1 
Comparison of Landmark, Relative, and Absolute Times on the Analog Clock. 

 Landmark Relative Absolute 

Time format <HLM> o’clock <Q/Mint> past/till <Href> <Hcur> <Mcur> 

Order of looking at dials Hour Quarter-hour or minute 
Hour 

Hour 
Minute 

Image schema for hour PROXIMITY SOURCE-PATH-GOAL CONTAINER 

 

 

TABLE 2 
Percentage of Times Named Correctly in Studies of American Children’s Clock-
Reading (compiled from Springer, 1952; Friedman & Laycock, 1989; Siegler & 

McGilly, 1989) 

 Type of Time 

Age Hour 
(3:00) 

30-min. 
(3:30) 

15-min. 
(3:15/45) 

5-min. 
(3:25) 

1-min. 
(3:27) 

4 10%     

5 45% 10% 5%   

6 75% 30% 15%  5% 

7 100% 90%   35% 

8  95%  

80% 
60% 

9  100% 70% 

10     80% 

 

 

TABLE 3 
Correct Naming of Times Using Different Image Schemas to Read the Hour 

 Image Schema 

Type of Time PROXIMITY CONTAINER SOURCE-PATH-GOAL 

Absolute    

Long hand right (H:15) Yes (latent error) Yes  

Long hand left (H:45) No (error) Yes  

Relative    

Long hand right (qtr past H) Yes (latent error) Yes (latent error) Yes 

Long hand left (qtr till H) Yes (latent error) No (error) Yes 
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FIGURES 
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FIGURE 1  Three image schemas involved in reading the hour on an analog clock. 
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FIGURE 2  Reading landmark times as “<number> o’clock.” 
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FIGURE 3  Reading relative time (time past or till the hour). 
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FIGURE 4  Reading absolute time (in hours and minutes). 
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FIGURE 5  Progression of learning to read times on an analog clock 
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FIGURE 6  Overgeneralization of the PROXIMITY image schema from landmark to 
absolute time.  The use of the proper image schema is shown on the right. 
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FIGURE 7  Overgeneralization of the PROXIMITY image schema from landmark to 
relative time.  The use of the proper image schema is shown on the right. 
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FIGURE 8  Excerpt from 1st grade instruction on reading “six forty-five.” 
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FIGURE 9  Overgeneralization of the CONTAINER image schema from absolute to 
relative time.  The use of the proper image schema is shown on the right. 
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FIGURE 10  Emerging expertise in conceptualizing “a quarter past.”  
Conceptualizations to the right have richer image-schematic structure. 

 


