4E Blending in Problem Solving, Collaborative Reasoning, & Teaching

Robert F. Williams

robert.f.williams@lawrence.edu

4E Cognition

(Newen, Gallagher, & DeBruin 2018; Sprevak 2019)

EMBODIED – Cognition depends on the physical nature of our bodies (internal sense [Johnson, 1987] & external sense)	ENACTED – Cognition consists in a looping interaction between perception and action
EMBEDDED – Cognition is integrated with the environment when we solve certain problems	EXTENDED – Some cognitive states or processes include states or processes in the environment

Strong version: Cognition is *partially constituted* by (body, environment, etc.)

Weak version: Cognition is causally dependent on (body, environment, etc.)

<u>Topics of debate:</u>

- What marks a process as cognitive?
- Are these instances of causal coupling or constitution?
- How do we avoid overextension or 'cognitive bloat'?

Theoretical Framework

Distributed Cognition

(Hutchins, 2001)

All cognition is distributed.

Cognitive processes may:

- be distributed across members of a social group;
- involve coordination between internal and external structure; and
- be distributed through time, such that products of earlier events transform the nature of later events.

Cultural practices shape conceptual models, artifacts, and forms of coordination in evolving cognitive ecologies.

=> emphasis on coordination

Conceptual Blending

(Fauconnier & Turner, 2002)

Conceptual blending is a general cognitive capacity.

Meaning is constructed in conceptual integration networks.

- selective projection
- composition
- completion
- elaboration ('running the blend')

Blended spaces have emergent structure that supports inferences.

=> emphasis on conceptualization

Distributed Cognitive "Functional Systems"

Material Anchors for Conceptual Blends

(Hutchins 2005)

Reasoning processes require **stable representation of constraints**.

Two principal ways to achieve stability:

- 1. familiar cultural models
- 2. associating conceptual structure with material structure

In a materially anchored conceptual blend, conceptual elements are mapped onto a material pattern such that relations among material elements are seen as relations among conceptual elements.

[cf. Fauconnier & Turner (2002): "objects that prompt for elaborate conceptual integration networks" (p. 214)]

Solving Everyday Problems

Determining:

Quantity	Order of Service	Presence / Absence
How	Who's	Who's
many?	next?	(not) here?

Determining Quantity: Coordination

(Williams, 2013)

moving objects

using finger proxies

Determining Quantity: Conceptualization

(Williams, 2013)

moving objects

using finger proxies

Determining Order of Service: Coordination

(based on order of arrival)

Noting those present

Queueing (standing in line)

Noting the prior arrival

Taking a token

Determining Order of Service: Conceptualization

(based on order of arrival)

Noting those present

Queueing (standing in line)

Noting the prior arrival

Taking a token

Determining Presence/Absence: Coordination

Calling roll

Asking group who's missing

Viewing a seating chart

Retrieving name tags

Determining Presence/Absence: Conceptualization

Calling roll

Asking group who's missing

Viewing a seating chart

Retrieving name tags

Determining Presence/Absence: Coordination

Using a sign-in sheet

Collecting items with names

Using facial recognition technology

Determining Presence/Absence: Conceptualization

Using a sign-in sheet

Collecting items with names

compare names to list

(+ sort items first)

(+ use list for sign-in)

Using facial recognition technology

Problem Solving: Preliminary Findings

Advantage of a DCog perspective:

• Using a broader unit of analysis allows us to examine/compare equivalent systems—those that solve the same cognitive problem in different ways.

Cognition is **embodied**, **embedded**, and **enacted**:

• We use our bodies to bring internal and external structures into functional coordination to accomplish the cognitive task.

Cognition is distributed, not 'extended':

- The head is not a boundary across which cognition "sometimes spills" into the world (Sprevak, 2009).
- Cognizers organize their internal (and bodily) processes in accordance with cultural practices and the material setting; they may also modify the setting to facilitate the coordination.

Anchored Blends in Collaborative Reasoning

(Williams, 2022)

tilt of the earth's axis

"Why is it hot in summer and cold in winter?"

orbit of the earth around the sun

Anchored Blends in Collaborative Reasoning

(Williams, 2022)

tilt of the earth's axis

"Why is it hot in summer and cold in winter?"

orbit of the earth around the sun

Anchored Blends in Teaching

(Williams & Harrison, 2014; Williams, 2019)

Finding direction from a wristwatch and the sun

the bisector is here

Reading a clock

okay, so I'd count [one-two-three-four-five-six-seven-eight-nine-ten]₁ [and it would go all the way—you think you would end]₂ up at sixty?

Questions and Tentative Answers

What marks a process as cognitive?

- First: Let's abandon the idea of 'necessary and sufficient conditions.'
- Maybe: A class of activities (reasoning, decision-making, etc.) that engage conceptual processes in their performance (not fully automatic).

Are these instances of causal coupling or constitution?

- The cognitive processes are carried out by functional coordinations of internal and external structure; with experience, external structure may be imagined. Why would we categorize these differently?
- The functional coordinations depend on the activity of one or more cognizers.

How do we avoid overextension or 'cognitive bloat'?

- We draw the unit of analysis around elements that play an essential role in the cognitive process—that are coordinated to produce the result.
- Conversely: How do we avoid over-attributing internal structure? We start with the broader functional system and work "outside in" to determine what must be happening in the individual.

References

- Fauconnier, G., & Turner, M. (2002). The Way We Think: Conceptual Blending and the Mind's Hidden Complexities. Basic Books.
- Hutchins, E. (2001). Cognition, distributed. In N. J. Smelser & P. B. Baltes (Eds.), *International Encyclopedia of the Social and Behavioral Sciences* (pp. 2068–2072). Pergamon Press.
- Hutchins, E. (2005). Material anchors for conceptual blends. Journal of Pragmatics, 37, 1555–1577.
- Johnson, M. (1987). The Body in the Mind: The Bodily Basis of Meaning, Imagination, and Reason. University of Chicago Press.
- Newen, A., Gallagher, S., & De Bruin, L. (2018). *The Oxford Handbook of 4E Cognition*. Oxford University Press.
- Sprevak, M. (2019). Extended cognition. In T. Crane (Ed.), *The Routledge Encyclopedia of Philosophy*. Routledge. https://doi.org/10.4324/9780415249126-V049-1
- Williams, R. F. (2013). Distributed cognition and gesture. In C. Müller, A. Cienki, E. Fricke, S. Ladewig, D. McNeill, & S. Teßendorf (Eds.), *Body Language Communication: An International Handbook on Multimodality in Human Interaction, Vol. 1* (pp. 240–258). Mouton de Gruyter.
- Williams, R. F. (2019). The source-path-goal image schema in gestures for thinking and teaching. *Review of Cognitive Linguistics*, 17, 411–437.
- Williams, R. F. (2022). Coordinating and sharing gesture spaces in collaborative reasoning. *Gesture, 21*, 115–149.
- Williams, R. F., & Harrison, S. (2014). Distributed cognition and gesture: Propagating a functional system through impromptu teaching. Learning and Becoming in Practice: The International Conference of the Learning Sciences (ICLS), Volume 3, 1655–1656.
 - https://archive.isls.org/conferences/icls/2014/Proceedings.html