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Preface

This book began in summer 2011 as an attempt to understand the mathe-
matical framework underlying quantum mechanics. Although I have long been
interested in physics, the immediate impetus for writing came from a reading
project with my friend Doug Martin in the Physics Department at Lawrence
University. In effect, this text is a first course in quantum mechanics from the
mathematical point of view, emphasizing the role of symmetry, and inspired
by J.S. Townsend’s A Modern Approach to Quantum Mechanics [22].

The history of mathematics is deeply entwined with the history of physics,
and the two subjects continue to influence each other in dramatic and inspiring
ways. Nevertheless, it is an unfortunate fact that physicists and mathemati-
cians often speak past each other and sometimes fail to appreciate the value
of each others’ concerns.® A physicist colleague once sent me a small poster
for my office inscribed with the pithy phrase: “Mathematics: Physics without
Purpose” I can imagine some of my mathematical colleagues retorting with
“Physics: Mathematics without Rigor.” While these taunts can be great fun,
they do not help bridge the gap between two powerful worldviews. Mathemati-
cians decry physicists’ desire to choose coordinates, and we tell them about
the beauty of abstract objects, generally defined as sets with further struc-
ture. Physicists often don’t see the point of these abstractions, and in any case
have little intuition for working with them. Instead, they are delighted with a
“debauch of indices” (E. Cartan) and are quite skilled at computing, which is
their real aim. After all, a physical theory is only justified qua physical theory
by its agreement with experiment.

This text takes a middle road, and is loosely structured as a conversation
between M (athematician) and P(hysicist). Starting with some basic physical
intuitions and experimental results, M and P set out to make a model of the
physical world. M introduces abstract mathematical objects, but she always
motivates them with reference to experiment and appeals to simplicity. In
this way, I hope that physicists already comfortable with the computations
of quantum mechanics will gain an appreciation for the natural way in which
these abstract objects arise. In response to these abstractions, P tends to

1Of course, there are mathematicians who work in the area of mathematical physics,
and physicists who identify primarily as mathematical physicists. These two communities
presumably understand each other reasonably well, and I am not thinking of them. Instead,
I refer to the majority of working mathematicians (who may not know much about modern
physics) and the bulk of experimental physicists (who may not know much about modern
mathematics).
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choose coordinates, but M is careful to make him account for all the other
choices he could have made. P’s instinct is to say: “of course I could have
chosen differently, but then I would just need to do some bookkeeping to
translate between the resulting computations.” But M insists that they study
the particular structure of the collection of possible choices at each stage. In
general, this is a group structure, and M and P are naturally led to build
a model of the physical world based on group representations. Remarkably,
much of the mathematical structure of quantum mechanics falls out from
this procedure, giving it an aura of inevitability and extreme beauty. In this
way, I hope that mathematicians already comfortable with Lie groups and
their representations will gain an appreciation for quantum mechanics and
its myriad connections to pure mathematics. Of course, the main audience for
this book is the advanced undergraduate or beginning graduate student whose
understanding of both physics and mathematics is just beginning to grow.

Indeed, the student I have in mind will have taken courses in multivariable
calculus, linear algebra, abstract algebra, real analysis, and perhaps topology.
But she may not have seen any truly rich connections between these various
subjects, and in any case would benefit from an opportunity to review them
in a new context, where she will gain exposure to some graduate-level topics:
smooth manifolds, group representations, Lie algebras, and Hilbert spaces. My
aim is to introduce these new topics in a natural way, as an outgrowth of a
compelling physical and mathematical exploration. Moreover, an introduction
is all that I intend, leaving a deeper and fuller account to other texts and
future courses. Especially with regard to the analytic subtleties that arise in
the context of self-adjoint operators on Hilbert spaces, I am content to raise
awareness of the difficulties while avoiding getting bogged down in the details.
Students will be better able to comprehend a graduate course in real analysis
if they have some prior understanding of why one should bother with those
technical details in the first place. A great place to learn about the details
in the context of quantum mechanics is B.C. Hall’s excellent text Quantum
Theory for Mathematicians [10].

This book is not intended as a replacement for introductory physics texts
such as [9, 22]: the reader will not learn perturbation theory nor gain profi-
ciency at computing the energy levels or eigenstates of any but the simplest
quantum mechanical systems. Nevertheless, M and P do try out their model on
systems such as the infinite spherical well, the harmonic oscillator, and the hy-
drogen atom. But the point is always to illustrate the underlying mathematical
structure, not the explicit form of the solutions or their physical consequences.
A highly recommended undergraduate text for students of mathematics that
does present peturbation theory with applications to scattering problems is
[3], which has a more analytic focus than our text, and also provides a fuller
discussion of the relationship between quantum and classical mechanics.

Likewise, this text is not meant as a replacement for more advanced math-
ematical treatments of quantum mechanics such as [10, 20]. In particular, M
introduces a piece of mathematics only if she feels it is demanded by physi-
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cal considerations. And even then, she resists the temptation to develop the
ideas in even modest generality, preferring to stay close to the physical model
under development. Overall, one might read this book as a motivating intro-
duction to Lie groups and their representations, with focus on the quantum
mechanically relevant Heisenberg group Hs and special unitary group SU(2).

While the results described herein are well-known, the presentation is
somewhat novel. In any case, my aim is to whet the appetite for further
study, and I hope this text serves to reveal the simplicity and beauty of a sub-
ject that is often perceived as complicated and intimidating. Exercises occur
throughout, and I have provided solutions to those tagged by the symbol & in
appendix A.4. In an effort to bridge the gap between the physics and math-
ematics literature, I have adopted some notation that may be more familiar
to physicists than mathematicians. In particular, time-derivatives are denoted
by ¢(t) rather than ¢/(¢), and primes instead decorate objects viewed from M’s
point of view as compared with P’s. In addition, I denote complex conjugation
by a* rather than @, and use L' to denote the adjoint/hermitian conjugate of
an operator rather than L*. A brief review of key material from linear algebra,
multivariable calculus, and analysis is provided in appendices A.1-A.3.

This book is dedicated to my son, Sebastian, and I certainly could not
have written it without the love, support, and patience of my wife Madera.
I would also like to thank my students Karl Mayer, Sanfer D’souza, and
Daniel Martinez Zambrano for working through early drafts of this material
as part of their Senior Experiences at Lawrence University—their questions
and comments have been extremely helpful. My colleague Allison Fleshman
from the Chemistry Department provided enthusiastic conversations and in-
sightful comments about the periodic table, and Doug Martin in Physics has
given me continual encouragement and inspiration. Finally, many thanks go
to an anonymous reviewer for excellent suggestions that have substantially
improved the exposition.

Scott Corry
Appleton, WI
May, 2016






Plan of the Book

Part I: Spin

Chapter 1: Physical Space ...in which M and P discover the group of
rotations, SO(3).

The book begins with a description of physical space as isomorphic to
R3, but care is taken to note that the choice of isomorphism is arbi-
trary. The argument by which this freedom of choice leads to an action
of SO(3) is carefully rehearsed so that it may serve as a template for
later discussions in less familiar contexts.

Chapter 2: Spinor Space ...in which M and P discover the special uni-
tary group SU(2) and its relation to the group of rotations SO(3).

On the basis of the Stern-Gerlach experiment, spinor space is described
as isomorphic to C2, but once again the choice of isomorphism is arbi-
trary. Following closely the pattern of Chapter 1, this freedom of choice
leads to an action of SU(2). The relationship between physical space
and spinor space is established by showing that SU(2) is the universal
cover of SO(3).

Chapter 3: Observables and Uncertainty ... in which M and P discover
the Lie algebra su(2) and its complexification sla(C).

A discussion of quantum observables leads to the definition of several Lie
algebras and an exploration of their relationship to the corresponding
Lie groups. The Lie bracket is shown to have a physical interpretation
in terms of uncertainty.

Chapter 4: Dynamics ...in which M and P discover the Schrédinger equa-
tion.

The time-evolution of spin-states is modeled as a curve in the unitary
group U(2), and this curve is shown to be determined by the Hamiltonian
of the physical system, obtained by quantizing the classical expression
for the energy.

xXvii



xviii Plan of the Book

Chapter 5: Higher Spin ...in which M and P classify the representations
of SU(2).

The complex irreducible representations of SU(2) are classified by work-
ing with the corresponding representations of the Lie algebra sly(C).
These representations are described explicitly and a physical interpreta-
tion is provided in terms of higher spin particles measured by a Stern-
Gerlach apparatus. The final section studies the irreducible representa-
tions of SO(3) as preparation for the theory of orbital angular momen-
tum in the second part of the book.

Chapter 6: Multiple Particles ...in which M and P learn about the ten-
sor product.

The tensor product of spinor spaces provides a model for the spin-states
of a system of two particles. This leads to the Clebsch-Gordan problem
for SU(2), whose solution describes how the tensor product of irreducible
representations decomposes as a direct sum of irreducibles.

Part II: Position & Momentum

Chapter 7: A One-dimensional World ... in which M and P discover the
Heisenberg group, Hy.

Position space L?(R) is introduced in order to model the position of
a particle in one dimension. The freedom of choice of an origin in physi-
cal space leads to an action of the group (R, +). This translation action
extends to an action of the Heisenberg group H;, and the correspond-
ing Lie algebra action provides the position and momentum operators.
The resulting framework is applied to several physical systems: the free
particle, the infinite square well, and the harmonic oscillator.

Chapter 8: A Three-dimensional World ... in which M and P combine
their studies of the Heisenberg group Hs and the rotation group SO(3).

Following the pattern developed for the one-dimensional world, posi-
tion space L?(R?) is introduced for three dimensions. This space carries
a translation action of the group (R3,+) which extends to an action of
the Heisenberg group Hjs. Hearkening back to Chapter 1, the choice of
a basis for physical space leads to an action of SO(3) on position space,
which combines with the Heisenberg action to yield an action of the
group G = H3z x SO(3). The corresponding Lie algebra action provides
the position, linear momentum, and orbital angular momentum opera-
tors. Several physical systems are studied: the free particle, the infinite
spherical well, the harmonic oscillator, and the Coulomb potential. In



Plan of the Book Xix

order to incorporate spin, the G-action is extended to an action of the
group G = H3x SU(2) on spinor-valued wave functions. This framework
is applied to the hydrogen atom, and a discussion of identical particles
leads to the Pauli exclusion principle and some insight into the structure
of the periodic table of the elements.

Chapter 9: Towards a Relativistic Theory ...in which M and P dis-
cover the central extension of the Galilean group, the restricted Lorentz
group SOT(1,3), and the Dirac equation.

The final chapter considers the relationship between the time-evolutions
of wave functions for observers in uniform relative motion. This leads
to an action of the central extension of the Galilean group in the non-
relativistic context, and to actions of the restricted Lorentz and Poincaré
groups in special relativity. The text ends with a discussion of the Dirac
equation describing a relativistic spin—% particle.
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Chapter 1

Physical Space

In which M and P discover the group of rotations, SO(3).

1.1 Modeling space

Let us imagine two observers, M(athematician) and P (hysicist). They are
located together, looking at empty space, armed with meter sticks and pro-
tractors. Their sense impressions will probably lead them to agree about the
following statements:

1. Space is three-dimensional and flat (i.e. not curved);
2. Their meter sticks are identical;

3. Their protractors are identical.

Of course, statement number 1 is imprecise. What does three-dimensional
really mean? What about flat? Nonetheless, these shared intuitions lead M to
propose the following model of the empty physical space surrounding them:

Definition 1.1. Physical space is a three-dimensional real inner product space
V. ()

P politely asks M to motivate her choice of model. M responds by unpack-
ing her concise definition!: V is a vector space over the field of real numbers R.
To say that V is three-dimensional means that there exists an ordered set of
three vectors {v1, va, v3} C V such that every v in V can be written uniquely
as

V = C1V] + CaVa + C3V3

for some particular real numbers ¢y, co, c3. The uniqueness means that two
distinct 3-tuples of real numbers will yield distinct linear combinations of the
basis vectors v;. Now P understands that M is using a vector space to capture
the intuition that space is “flat”; and in this context “three-dimensional” ac-
quires a precise meaning that meshes with physical intuition: there are exactly
three independent directions in space, no more and no less.

An inner product on V is a function (,): V x V — R such that if c € R
and v,v/,w € V, then:

1See appendix A.1 for a summary of basic concepts in linear algebra.
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i) (ev+ v, ,w)=c(v,w) + (v, w) (linearity in first component);
i) (v,w) = (w,v)  (symmetry)

iii) (v,v) > 0 with equality if and only if v =0 (positive definite).

Exercise 1.2. Show that conditions i) and i) for an inner product imply
linearity in the second component: (w,cv +v') = c(w,v) + (w, V).

M summarizes by saying that an inner product is a bilinear, symmetric, pos-
itive definite function on V' x V. So far, P isn’t very impressed with this as
motivation for M’s definition of space. But M continues: define the length of
a vector v in V to be |v| := y/(v,V), which is a non-negative real number
by condition iii). Furthermore, define the angle? between two nonzero vectors

(v,w)

W) Observer P now understands: an

v and w to be O(v,w) := arccos(

inner product on V' is an algebraic gadget that captures the notion of length
and angle. Since M and P have identical meter sticks and protractors, they
have the same notion of length and angle, hence they agree about the inner
product on V.

Exercise 1.3. Suppose that (X, {,)) is a real inner product space. Show that
the inner product (,) is uniquely determined by the corresponding length func-
tion. That is, show that if two inner products define the same length function,
then they are the same. (Hint: Compute |x; + x3|?).

Example 1.4. Fix an integer n > 1, and consider the set R™ of all n-tuples
of real numbers:
R™ .= {(z1,22,...,2,) | z; €R}.

Then R™ is an n-dimensional real vector space under the operations of
component-wise addition and scalar multiplication. The standard basis for
R™ is given by {e1,...,e,}, where the vector e; has a 1 in the ith slot and
zeros elsewhere. Define the dot product of two vectors in R™ by the formula

n
(I17x27' <. 7I7I) ! (y17y27 s 7yn) = szyi
1=1

The reader should check that -: R™ x R™ — R defines an inner product on R™.
The resulting real inner product space (R™,-) is called real Euclidean n-space.

P is tired of all this formalism, and wants to start doing experiments. So he
begins to set up his lab. He is going to want to make measurements, so his first
order of business is to set up a coordinate system. In terms of the model, this
requires a specific choice of ordered basis {vy1,va,v3} for the vector space V.

2Here arccos : [—1, 1] — [0, 7] is the inverse of the cosine function. This definition makes
sense because of the Cauchy-Schwarz inequality which states that |(v,w)| < |v||w] for all
vectors v,w € V.
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FIGURE 1.1: The basis on the left is left-handed; the basis on the right is
right-handed.

The fact that V is three-dimensional guarantees that at least one such basis
exists, but P quickly realizes that there are in fact infinitely many distinct
bases to choose from, each of which corresponds to a different coordinate
system for his lab. However, P doesn’t like all coordinate systems equally. He
prefers one in which the coordinate axes are orthogonal. Moreover, it strikes
P as convenient to normalize his basis vectors to have length 1 (i.e. the same
length as his meter stick). Thus he decides to choose an orthonormal basis
{u1,uz,u3} for the inner product space (V, (,)), which means that the basis
vectors are pairwise-orthogonal and have unit length®. Observer M agrees that
this is a reasonable condition to impose on a choice of basis: after all, since M
and P agree about the inner product on V', they will also agree about whether
a given basis is orthonormal.

P has one more preference about coordinate systems: because he is right-
handed, he wants to use a right-handed coordinate system. By a right-handed
system he means the following (see figure 1.1): if he points the fingers of his
right hand along the direction of his first coordinate axis, and curls them to-
ward his second axis, then his thumb will point in the direction of his third axis
(rather than in the opposite direction). Using physical intuition, P observes
that any orthogonal coordinate system is either right-handed or left-handed,
and that any two right-handed systems are related by a rotation, and similarly
for any two left-handed systems. However, to move a right-handed system onto
a left-handed system requires a reflection. At first, M is reluctant to build these
considerations into their model of space, but she finally relents after specify-
ing the following implication: the distinction between right- and left-handed
coordinate systems divides the collection of all bases for V' into two disjoint
subsets. P’s preference for right-handed systems corresponds to the selection
of one of these two subsets as the positively oriented bases. If you flip the sign
of the third basis vector in a positively oriented basis, you get a negatively

3The Gram-Schmidt orthogonalization algorithm guarantees that such a basis exists.
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oriented basis and vice-versa (this flipping corresponds to the reflection across
the plane spanned by the first two basis vectors). The specification of which
subset is positive is called an orientation on V', so their model of space is now
an oriented three-dimensional inner product space. The next exercise makes
the notion of orientation rigorous and generalizes it to n dimensions.

Exercise 1.5. Suppose that X is an n-dimensional real vector space, and
that v 1= {X1,Xa,...,Xn} and v := {x{,x,...,x,} are two ordered bases
for X. Then there is a unique isomorphism ® : X — X with the property that
®(x;) = x; for all i. Since ® is invertible, the determinant of ® is a nonzero
real number. Define a relation ~ on the set of all bases of X by saying that
v ~ " if and only if det(®) > 0. Show that ~ is an equivalence relation that
partitions the set of all bases for X into two subsets. The choice of one of
these subsets as positive is called an orientation on X.

After all of this discussion, P finally chooses a positively oriented orthonor-
mal basis 8 := {uy, us, us} for the oriented inner product space (V, (,)). Hav-
ing made this choice, he can think about space in more concrete terms as
follows. Given an arbitrary vector v € V., there exist unique real numbers
a, b, c such that v = auy + bus + cug. This correspondence defines an isomor-
phism of vector spaces ¢: V — R3 defined by ¢(v) = (a, b, ¢). Moreover, since
P’s basis is orthonormal, ¢ actually yields an isomorphism of inner product
spaces @: (V,(,)) — (R3,.). That is, ¢ not only preserves the vector space
structure, it also preserves the inner products.

Exercise 1.6. Suppose that (X,(,)) is an n-dimensional real inner prod-
uct space, and that v := {uj,us,...,u,} is an orthonormal basis for X.
For any vector x € X, the fact that v is a basis means that there exist
unique real numbers ay,as,...,a, such that x = Z?:l a;u;. Show that the
function ¢: X — R"™ defined by p(x) := (a1,as2,...,a,) is an isomorphism
of vector spaces. Further, show that ¢ preserves the inner products, hence
is an isomorphism of inner product spaces: for all x1,x2 € X, we have

(x1,%2) = ¢(x1) - P(x2).

Thus, once P chooses a positively oriented orthonormal basis, he has identified
space with (R3, ) endowed with the familiar right-handed orientation in which
the standard basis is positive. With this, P feels like he is back on firm ground
and starts thinking about some experiments he wants to perform. But M
interrupts with an annoying question: how does this more concrete description
of space depend on P’s choice of orthonormal basis?

To make the question more precise, M chooses a different positively ori-
ented orthonormal basis for (V, (,)), which she denotes by 8’ := {u}, u}, us}.
As above, this choice of basis defines an isomorphism ¢’: (V,(,)) — (R3,-).
But note that ¢’ is not the same isomorphism as ¢, so when P and M each
decide to describe space as (R3, ), their descriptions do not agree. Neverthe-
less, they are both working with (V (,}), so there must be a way of translating
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between the two descriptions. To discover the translation, consider the com-
posed function ¢’ o o~1: (R3,.) — (R3,.). This function is an isomorphism,
since it is the composition of two isomorphisms. Since it maps R3 to itself,
we say that it is an automorphism of the inner product space (R?,-). We can
picture the situation via the commutative diagram below:

V:V

T

R3 ‘P'o—‘o_l> R3.

In order to better understand the automorphism ¢’ o ~!, we pause to provide

a brief review of certain classes of linear operators on real Euclidean n-space.

1.2 Real linear operators and matrix groups

Suppose that L: R™ — R"™ is a linear operator, and let € := {e, eq,...,e,}
denote the standard basis of R™ (see example 1.4) . Then L is represented (with
respect to €) by an n X n matrix of real numbers, which we also denote by L:

L= [L”] where L(ej) = ZLijeZ-.
i=1

This means that the jth column of the matrix L is the vector L(e;). We
may now express the effect of the linear operator L as left-multiplication on
column vectors: if v = (v1,v9,...,v,), then viewing v as a column yields
L(v) = Lv € R", where the ith component of Lv is

(LV)Z' = Z Lijvj,
j=1

the dot product of the ith row of L with v.
The next few propositions express properties of the linear operator L in
terms of the corresponding matrix.

Proposition 1.7. The linear operator L is an automorphism of the vector
space R™ if and only if the matriz L is invertible.

Proof. The operator L is an automorphism if and only if it possesses an in-
verse: a linear operator M : R™ — R™ such that Lo M = M o L = id, the
identity transformation. But composition of linear operators corresponds to
multiplication of the corresponding matrices, so the existence of an inverse op-
erator is equivalent to the existence of a matrix M such that LM = ML = I,
the n x n identity matrix. O
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Denote by GL(n,R) the set of all invertible n x n matrices with real entries.
Note that this set has the following properties with respect to the operation
of matrix multiplication:

i) (closure) If A and B are in GL(n,R), then so is their matrix product
AB, since the inverse of AB is equal to B~1A~1,

ii) (identity) The identity matrix I, € GL(n,R), and it satisfies [, A =
AL, = A for all A€ GL(n,R).

iii) (inverses) If A is in GL(n,R), then so is A~!, since (A71)~!1 = A.

iv) (associativity) Matrix multiplication is associative: (AB)C = A(BC) for
all matrices A, B, C of compatible sizes. This follows from the fact that
matrix multiplication corresponds to the composition of linear operators,
and composition of functions is associative.

These statements mean that GL(n,R) forms a group under matrix multipli-
cation; it is non-abelian since AB # BA for matrices in general.

Definition 1.8. The group of all invertible n X n real matrices, denoted
GL(n,R), is called the real general linear group. It is the symmetry group
of the vector space R™.

Proposition 1.9. Suppose that L € GL(n,R). Then L preserves the dot
product on R™ if and only if L= = LT, the transpose of the matriz L. (By
“preserves the dot product” we mean that Lv-Lw =v-w for all v,w € R".)

Proof. Recall that the transpose of a matrix is obtained by reflecting across
the main diagonal: (LT);; := Lj;;. We first show that for all v,w € R", we
have Lv - w = v - LTw. Indeed, note that if we think of v and w as column
vectors, then w7’ is a row vector, and we may express the dot product as
matrix multiplication: v - w = w’ v. Replacing v by Lv yields

Lv-w=w!(Lv) = (w'L)yv=(L"w)v=v. LTw.

(Here we have used the fact that (AB)T = BT AT for any two matrices of
compatible sizes.) We now apply this identity to the dot product of Lv and
Lw:

Lv-Lw=v-LTLw.

Clearly, if L' = LT, then LTL = I, and L preserves the dot product as
claimed. Going the other direction, if L preserves the dot product, then we
find that v-w = v - LT Lw for all v, w. Subtraction yields

O=v-w—v-L'Lw=v-(I, - L"L)w.

Since this equation holds for all v and w, we may take v = (I, — LT L)w to
find that

(I, — L"L)w - (I,, — L L)w = 0.
Since the dot product is positive definite, it follows that (I,,— LT L)w = 0 for all
w. Thus, I,, — LT L is the zero operator, so that L"L =1, and L=' =LT. O



Physical Space 9

Denote by O(n) C GL(n,R) the subset of matrices satisfying the condition
L~!' = L7, Such matrices are called orthogonal. The reader should check that
O(n) is a subgroup of GL(n,R): a subset containing the identity matrix and
closed under matrix multiplication and inverses.

Definition 1.10. The group of all invertible n X n real matrices satisfying
L= = LT, denoted O(n), is called the orthogonal group. It is the symmetry
group of real Euclidean n-space (R™,-).

Exercise 1.11. Suppose that L: R™ — R™ is a linear operator. Show that
L € O(n) if and only if L preserves the lengths of vectors: |Lv| = |v| for all
v € R™. (Hint: use proposition 1.9 and compute |L(v + w)|2.)

Proposition 1.12. The determinant of an orthogonal matrixz is +1.

Proof. If L is orthogonal, then I, = LT L. Taking the determinant of both
sides yields 1 = det([,,) = det(LTL) = det(LT) det(L) = det(L)?. It follows
that det(L) = +1. O

Now endow (R™,-) with the orientation for which the standard basis ¢ is
positive. If L € GL(n,R) is an invertible matrix, we say that L is orientation
preserving if L sends positively oriented bases to positively oriented bases.
By exercise 1.5, we see that L is orientation preserving if and only if det L >
0. It follows from the previous proposition that an orthogonal matrix L is
orientation preserving if and only if det L = 1; such matrices are called special
orthogonal, and they form a subgroup of the orthogonal group.

Definition 1.13. The special orthogonal group is the subgroup SO(n) C
O(n) of orthogonal matrices with determinant 1. It is the symmetry group of
oriented real Fuclidean n-space.

Before returning to our observers M and P in three dimensions, we take a
close look at all of these groups in the cases n =1 and n = 2.

Example 1.14. For n =1 we have the following groups:
e GL(1,R) =R*, the group of nonzero real numbers;
e O(1) = {£1}, the sign group;
o SO(1) = {1}, the trivial group.

Example 1.15. The real general linear group GL(2,R) consists of 2 X 2 real
matrices with nonzero determinant. Hence, we have

GL(Z,IR{):{[C; Z] |ad—bc;£0}.

Equivalently, a 2 x 2 real matriz is an element of GL(2,R) if and only if its
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columns form a basis for R2. Concretely, this means that neither column is a
scalar multiple of the other.
Writing out the othogonality condition Iy = LT L we find

1 0] |a c a bl [a*+c ab+cd

o] o sl ] s wr

Equating entries, we obtain the conditions a®>4c? = b*4+d? = 1 and ab+cd = 0.

Interpreting these relations as dot products, we see that L is orthogonal exactly

when the columns of L have unit length and are orthogonal to each other. Thus,

a 2 X 2 real matriz is an element of O(2) if and only if its columns form an
orthonormal basis for (R?,-).

Note that for any choice of a,c such that a®> + ¢ = 1, the point (a,c) lies

on the unit circle in R%. Hence, there exists a unique angle 0 € [0,27) such

that a = cos(0) and ¢ = sin(0) (see figure 1.2). The remaining two conditions

on b and d then imply that (b,d) = +(—sin(0),cos(d)). Thus, we have the
following description of the orthogonal group O(2):

0) = | @) con) || ity oty | 1050 <27}

Finally, if we demand that the determinant is +1, we find that only half
of the matrices in O(2) remain as special orthogonal matrices:

SO(2) = {Lg - { ‘;fj((g)) }ils?é?) ] 10<0< zw}.

Hence, each element of SO(2) is uniquely determined by an angle 6 € [0, 27).
In fact, the special orthogonal matriz Le describes a counter-clockwise rotation
through the angle 0 (see figure 1.2). The first standard basis vector e; = (1,0)
is sent to (cos(0),sin(0)), while the second standard basis vector ea = (0, 1) is
sent to (—sin(6), cos(0).

Exercise 1.16. Generalize the analysis in the preceding example to show that
forallm > 1:

a) an n X n real matriz L is in GL(n,R) if and only if the columns of L
form a basis for R™;

b) an n x n real matriz L is in O(n) if and only if the columns of L form
an orthonormal basis for (R™,-).

Part b) of the previous exercise has the following important consequence.
We have defined a linear operator L on real Euclidean n-space to be orthogonal
if its matrix with respect to the standard basis satisfies LT = L~!. But in
fact, the next proposition shows that this relation between the transpose and
inverse of an orthogonal operator holds for the matrix of L with respect to
any orthonormal basis. We will make use of this fact in proposition 1.19 in
the next section.
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(b,d) = (—sin(0), cos(9))

FIGURE 1.2: The 2 x 2 special orthogonal matrix Ly defines a counter-
clockwise rotation through the angle 6.

Proposition 1.17. Let L: R™ — R™ be a linear operator, and v :=
{ui,...,u,} be any orthonormal basis for (R™,-). Denote by [L], the ma-
triz representing L in the basis v. Then L is an orthogonal transformation if

and only if [L)T = [L];*.

Proof. Let @ be the change of basis matrix from v to ¢, the standard basis.
Recall that the jth column of @ is simply the basis vector u;. Hence, by part
b) of the previous exercise, @ is orthogonal and Q~! = Q. Then writing L
for [L]. as usual, we have [L], = QLQ ! = QLQT. We may then compute

[LIT[L], = (QLQM)TQLQT = QLTQTQLQ" = Q(L"L)Q™.

From this equation we see that [L]T[L], = I, if and only if LTL = I,, as

claimed. O

1.3 SO(3) is the group of rotations
Recall the situation of M and P, illustrated by the following diagram:

1 b



12 Symmetry and Quantum Mechanics

P has chosen an orthonormal basis § = {uj,us,us} for the inner product
space (V, (,)), thereby obtaining an isomorphism ¢: (V, (,)) — (R3,). Mean-
while, M has chosen a different orthonormal basis 5’ = {u], u}, uj}, thereby
obtaining a different isomorphism ¢': (V, (,)) — (R3,). To study the differ-
ence in their descriptions of physical space, we are considering the composition
@ oL

Since this composition of isomorphisms is an automorphism of R3, we
may identify it with an invertible matrix of real numbers, i.e. an element of
GL(3,R). Moreover, because the automorphism ¢’ o ¢! preserves the dot
product, the corresponding matrix is actually an element of the orthogonal
group O(3). But because M and P both chose positively oriented bases, the
automorphism ¢’ o =1 preserves the orientation on (R3,-), which means that
its determinant is 1. As a concise summary, M says that the difference between
the two descriptions of space is the automorphism ¢’ o ¢!, which may be
identified with an element of the special orthogonal group SO(3).

Exercise 1.18. Show that the matriz representing ¢’ o =1 with respect to

the standard basis on R> is simply the change of basis matriz from the ba-
sis 3 to the basis 3. Recall that this is the matriz representing the identity
transformation id: V' — V with respect to the bases 3 and 3':

3
[id]gl = [bij] where  u; = Zbiju;.
i=1

In example 1.15, we saw that the group SO(2) consists entirely of rota-
tions. In the next proposition, we establish the corresponding result for three
dimensions.

Proposition 1.19. The special orthogonal group SO(3) consists of rotations
in real Fuclidean 3-space. More precisely, for each mon-identity element A €
SO(3), there is a unique line of R® that is fived pointwise by A. Moreover, A
acts as a rotation through some angle 8 around this fized axis.

Proof. Let A € SO(3) be an arbitrary special orthogonal matrix. We begin
by showing that 1 is an eigenvalue for A, so that A fixes the line spanned
by a corresponding eigenvector in R?; this line will turn out to be the axis of
rotation.

Note that the characteristic polynomial p4(\) := det(A — Al3) is a degree
3 polynomial with real coefficients and hence has at least one real root, say
Ao € R. Thus, Ag is an eigenvalue for A, and we may choose a unit length
eigenvector u € R? such that Au = M\gu. Now use the fact that A preserves
the dot product:

l=u-u=Au-Au= \u-\u = Nu-u=>\2

Thus, we see that any real eigenvalue of A satisfies A\g = £1.
There are two cases depending on the factorization of the characteristic
polynomial over R:
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i) the polynomial p4(\) factors into linear factors over R, so that A has 3
real eigenvalues \g, A1, Ao, each of which is £1 by the previous argument.
Then 1 = det(A) = ApA1A2, which implies that at least one of the
eigenvalues is +1. If all three of them are +1 then A is the identity.
Otherwise, only one of the eigenvalues is +1, and the corresponding
1-dimensional eigenspace is the unique line that is fixed pointwise by A.

ii) the polynomial p4(\) factors into a linear factor (x — Ag) and an irre-
ducible quadratic. By the quadratic formula, the complex roots of the
irreducible quadratic factor are complex conjugates, say Ay = A5 € C.
It follows that 1 = det(A) = AgA1d2 = Ao|\1]?. Since [A1]? > 0, we
see that Ay = —1 is impossible in this case, so that A\g = 1. Again, the
corresponding 1-dimensional eigenspace is the unique line that is fixed
pointwise by A.

Thus, we have established that 1 is an eigenvalue for A, and we have
chosen a unit length eigenvector u such that Au = u. Expand {u} to an
orthonormal basis v := {u, v, w} for (R?,-). In the basis v, the linear operator
A is represented by a matrix of the following form:

1 v w
[Al, =10 a b
0 ¢ d

In fact, v = w = 0. Indeed, we simply need to use the orthonormality of the
basis together with the orthogonality of the matrix A to compute:

v=Av-u=v-ATu=v-A'lu=v-u=0.

The proof that w = 0 is the same, with w in place of v.
Therefore, in the basis vy, our special orthogonal transformation A is rep-
resented by a matrix

10 0
1 of

AL =foa =g %]
0 ¢ d 0 B

where we have written B for the 2 x 2 matrix in the lower right. Now by propo-
sition 1.17, the matrix [A], satisfies [A]7[A], = I3. But explicit computation
then shows that
=L, = | o grp |

o' Y 0 BTB )
so that BT B = I, and B € O(2). But we also have that 1 = det(A) = det(B),
so that in fact B € SO(2). As revealed in example 1.15, the elements of SO(2)
describe rotations, and we may write [A], explicitly as

1 0 0
[Al, =1 0 cos(#) —sin(h)
0 sin(d) cos(9)
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for some angle 0 < 6 < 2. The matrix clearly reveals the effect of the linear
operator A: it fixes the axis spanned by the eigenvector u while rotating the
plane perpendicular to that axis through the angle 6. O

Once P recognizes SO(3) as the group of rotations, he adds to the previ-
ous discussion as follows: his choice of the basis 8 leads to the identification
o: (V,(,)) — (R3,-), sending 3 to the standard basis ¢ of R3. Then M’s choice
of basis 8’ determines an automorphism A of (V,(,)) defined by A(u;) = u,.
In physical terms, A rotates P’s coordinate axes onto M’s. In terms of P’s
description, the automorphism A is represented with respect to the basis 5
by the matrix A := [A]z € SO(3). Explicitly, we have

3
A:=la;]  where  A(u;) =u) = Zaijui.
i=1

It follows from exercise 1.18 that A is the inverse of the matrix representing
¢ o ¢t Thus, the matrix A € SO(3) that describes (with respect to j3)
the rotation that moves P’s coordinate axes onto M’s is the inverse of the
change of basis matrix describing the translation from P’s description to M’s.
Conversely, an arbitrary element of SO(3) will describe for P a way of rotating
his coordinate axes to obtain a new right-handed coordinate system, hence a
new positively oriented orthonormal basis for (V, (,)). Thus, the group SO(3)
acts as the group of rotations on P’s copy of space (R3,-), serving to connect
P’s basis with all other possible choices of positive orthonormal basis. The
next definition specifies exactly what it means for a group to act on a set.

Definition 1.20. Let G be a group, and X a set. Then a G-action on X is a
function G x X — X (denoted by (g, x) — gxx) with the following properties:

® (9192) xx = g1 x (g2 * @) for all g1,92 € G and v € X;
e exx =u for all x € X, where e € G is the identity element.

In the case where X is a vector space, we can make the additional requirement
that each g € G acts linearly on X :

gx(cx+y)=clg*z)+ (g*y) for all x,y € X and scalars c.

Such a linear G-action is called a representation of the group G. Almost all
of the group actions considered in this text will be linear representations, and
we will have much more to say about them in Chapter 5.

Exercise 1.21. Show that left-multiplication (A, x) — A*xx := Ax defines an
action of SO(3) on R3. This is clearly a linear action, and we refer to it as

the defining representation of SO(3). We will study the other representations
of SO(3) in section 5.6.
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FIGURE 1.3: Observer M’s rotated coordinate system (dashed) drawn on
top of P’s coordinate system (solid). The vector L represents a spinning top’s
angular momentum.

Observer P wants to try all this out to make sense of it. So having laid
out his coordinate system, he starts a top spinning at the origin, with its axis
of rotation along the third axis. When he looks down on it from the positive
third axis, it is spinning counter-clockwise.The angular momentum?* of the
top is represented by a vector L = (0,0, c), where ¢ > 0 is the magnitude
(see figure 1.3). This entire description derives from P’s initial choice of the
basis 3, which yielded the identification with R3. As above, suppose that M’s
basis 3’ is obtained from B via the rotation A. What is the column vector®
representing the top’s angular momentum under M’s identification of space
with R3? As explained above, since the rotation sending P’s basis to M’s is
represented by the orthogonal matrix A := [A]g, the observed coordinates
transform according to A= = AT. Hence, M will measure AT[0,0,c|T for
the angular momentum of the top. Take a simple example: suppose that M’s
coordinate system is obtained by rotating P’s through an angle of § counter-
clockwise around P’s second axis (see Figure 1.4). Then uj = —u3,u}, = uy,
and uj = u;. Thus, the rotation A is defined by

A(uy) = —us, A(uz) = uy, A(uz) = u;.
The matrix of A with respect to P’s basis 8 is

0 O
A= 0

1
1 0
-1 0 O

4See section 2.1 for a brief discussion of angular momentum.

5For reasons of typographical economy, we have been writing elements of R3 as row
vectors (a, b, ¢), although they are really columns [a, b, c]T for the purposes of matrix mul-
tiplication.
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FIGURE 1.4: A rotation of /2 radians about the ugp-axis. The dashed lines
in both pictures show P’s coordinate axes.

Hence, M will measure A7[0,0, c]” = [—¢,0,0]” for the angular momentum of
the top. This is what we should expect, because P’s positive third axis points
along M’s negative first axis.

P thinks of all this as an elaborate bookkeeping device. M understands
this point of view, but advocates for a richer viewpoint. Namely, because
P’s choice of positively oriented orthonormal basis is arbitrary, the only way
to make his identification of space with (R®,-) independent of this choice
is to remember that SO(3) acts on this inner product space. Moreover, any
physically meaningful mathematical object connected with this model of space
should also be independent of the choice of basis, hence must support an action
of SO(3). That is, we expect to find that the mathematical gadgets that serve
as models for physical systems will support a natural action of the group
SO(3). Observer P nods politely and changes the subject ... he wants to tell
M about something called the Stern-Gerlach experiment.



Chapter 2

Spinor Space

In which M and P discover the special unitary group SU(2) and its
relation to the group of rotations SO(3).

In 1922, Otto Stern and Walter Gerlach sent a beam of silver atoms
through an inhomogeneous magnetic field and measured the resulting deflec-
tion of the atoms. Before we can understand the surprising results of their
experiment, we need just a bit of information about the classical theory of
angular momentum.

2.1 Angular momentum in classical mechanics

Suppose that the function r: R — R3 describes the position of a parti-
cle with mass m, so that at time ¢, the particle is at the location r(t) =
(z(t),y(t),z(t)). Then the velocity of the particle is given by the time-
derivative 1, and its linear momentum is defined to be p := mr. Thus, the
linear momentum is a measure of the particle’s linear motion, taking into ac-
count both its velocity and mass. For a similar measure of rotational motion,
we define the angular momentum of the particle with respect to the origin as
L :=r X p, the cross product of the particle’s position and linear momentum
(see figure 2.1).

Now let’s revisit the top, T, that observer P started spinning at the end of
the previous chapter. The top has its axis of symmetry aligned with the z-axis,
and is spinning counter-clockwise at the rate of w radians per second—so T'

FIGURE 2.1: The position, linear momentum, and angular momentum of a
particle moving in three-dimensional space.

17
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makes a full revolution every 27 /w seconds. Consider a point of T at height
z and distance r > 0 from the z-axis. As T spins, the point follows a circular
trajectory:

r(t) = (r cos(wt), rsin(wt), z). (2.1)

If we assume that T" has a uniform mass density, p, then a small volume AV
centered at our point will have mass pAV. Treating this small volume as
a single particle, it has angular momentum r x rpAV. Integrating over the
spatial extent of T C R? at a given instant yields the angular momentum of

the spinning object T":
L:= / r x rpdV.
T

Let’s work this out explicitly in the case where T' = Bp is the ball of
radius R > 0 centered at the origin. Note that the derivative of the circular
trajectory (2.1) is

r(t) = (—rwsin(wt), rw cos(wt), 0),

so the cross product is r x I = rw(— cos(wt)z, — sin(wt)z, r). Using cylindrical
coordinates, we compute that at any instant of time we have:

L = / r x rpdV

VRZ_22
= wp/ / /g —rcos(0)z, —rsin(8)z, r?)rdodrdz.
—RJr

The first two components of this integral are zero due to the inner inte-
gration over 6, while for the z-component we have

VRZ=22 ,or
L, = wp/ / / r3dfdrdz
r= 0=
VRZ_2Z
= 27Twp/ / r3drdz

= pr/ (R* — 2%)%dz
2 z=—R

8 5
= 1—577wa

Note that the total mass of the ball is M = 37TR3 p, so that the z-component of
the angular momentum may be rewritten as L, = Iw, where I := 2]\/[ R? is the
moment of inertia of the spinning ball. Finally, deﬁning the angular velocity
vector as w := (0,0,w), we may write the angular momentum as L = Jw. We
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see that the angular momentum is a vector quantity in R? that incorporates
both the rate of rotation and the distribution of mass around the axis of rota-
tion. Observe that spinning the ball clockwise rather than counter-clockwise
corresponds to replacing w > 0 by —w < 0, which has the effect of reversing
the direction of the angular momentum L. In particular, for any angular speed
w, the vector L points along the z-axis, with magnitude determined by the
absolute value of w, and direction (“up” or “down”) determined by the sign
of w.

Of course, there is nothing special about the z-axis here. If w is an arbitrary
vector in R3, then it spans a line of rotational symmetry for the ball Bg,
and L = w is the angular momentum of Br when it spins counter-clockwise
around w at the angular speed of |w| radians per second. Of course, a counter-
clockwise rotation around w is a clockwise rotation around —w, so changing
the rotational sense (without changing the angular speed) simply replaces L
by —L.

We would like to find a way of measuring the angular momentum of the
ball in a laboratory. It turns out that if the ball is small and electrically
charged, then there is an ingenious way of measuring its angular momentum
that relies on the classical theory of magnetic fields. We will describe the
details below, but the upshot is that with the right experimental setup, the
observed deflection of the ball in the z-direction will be directly proportional
to the z-component, L., of its angular momentum, so that we can measure the
ball’s angular momentum by instead measuring the magnitude of its spatial
deflection.

So suppose that our spinning ball is small, and that it carries a distribution
of electric charge. The rotating charge turns the ball into a little magnet,
characterized by its magnetic dipole moment, p, a vector quantity proportional
to the angular momentum, L:

p =~L.

Here, the constant of proportionality, v, depends on the charge distribution
on the ball. The important point for us is that this magnetic dipole moment
determines the force that the ball will experience if placed within an external
magnetic field.

In particular, if B is an inhomogeneous magnetic field with dominant di-
rection z, and strength increasing linearly in the positive z-direction, then the
ball will experience a force in the z-direction, proportional to the z-component
of p (i.e., proportional to the z-component of L). Hence, if we were to send
the ball down the z-axis through the field B, then the ball would be deflected
in the z-direction, traveling up if L, > 0, down if L, < 0 (if L, = 0, then the
ball would experience no deflection). Moreover, if we confine the field B to a
region of fixed length along the z-axis, and if we know the constant velocity of
the ball as it travels down the x-axis, then the magnitude of the z-deflection
will be directly proportional to the magnitude of L.. This is the fact that
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FIGURE 2.2: A Stern-Gerlach device oriented in the positive z-direction.
The vertical arrows indicate the z-component of the resulting inhomogeneous
magnetic field.

Stern and Gerlach used as the basis of their experiment with silver atoms!

in 1922. By a Stern-Gerlach device (see figure 2.2), we will mean a device of
fixed length that produces such an inhomogeneous field B.

Now imagine sending a beam of these spinning balls down the x-axis,
through a Stern-Gerlach device oriented in the positive z-direction as de-
scribed in the previous paragraph. We assume that all of the balls have the
same linear velocity, but that their angular momenta are distributed among all
directions and a large range of angular speeds. That is, we have carefully pre-
pared the translational motion, but have made no special preparation of the
rotational motions. In particular, the z-components of the angular momenta,
L., will form a continuous range of values, positive and negative. Since the
z-deflection of an individual ball is proportional to the z-component of its
angular momentum, we should find a continuous spread of the beam in the
positive and negative z-directions.

Being small and charged, we expect our spinning ball to provide a crude
classical model of the electron, considered as a charged point particle. So,
applying the previous thought experiment to a beam of electrons, we record
our conclusion as a

Classical Expectation: We should observe a continuous spread
of the electron beam in the positive and negative z-directions, re-
flecting a continuous range of values for L, among the individual
electrons (see figure 2.3).

But the experimental results are strikingly at odds with this expectation:

1The experiment described actually requires a neutral particle in order to avoid the
Lorentz force that a moving charge would experience. However, the magnetic moment of a
silver atom is due almost entirely to the magnetic moment of its outermost electron, so in
effect, Stern and Gerlach were detecting the angular momentum of the electron (see [22, pp.
1-4]). Hence, for the idealized Stern-Gerlach thought experiments discussed here, we speak
in terms of the negatively charged electron, even though the actual historical experiment
requires a neutral particle.
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FIGURE 2.3: The classical expectation for the behavior of an electron-beam
in a Stern-Gerlach device.

FIGURE 2.4: The actual behavior of an electron-beam in a Stern-Gerlach
device.

Experimental Result: The electron beam splits into two dis-
crete pieces, with half the electrons deflecting upward as if they
have L, = g, while the other half deflects downward by the
same amount, as if they have L, = —% (see figure 2.4). Here,
h = 1.054573 x 10734 kg- m?/s is the reduced Planck constant.

Faced with this experimental fact, the only conclusion we can draw is
that the crude classical model of the electron as a spinning charged ball is
wrong. Instead of displaying a continuous range of angular momenta, the beam
behaves as if it contains a 50-50 mix of two types of electrons: those that are
“spin up” and those that are “spin down” along the z-direction. While the sign
for each electron appears to be random, the magnitude of the z-component
of angular momentum is fixed at % But the phenomenon is actually stranger
still, because there is nothing special about the z-direction!

Indeed, suppose that we turn on the electron beam before establishing the
magnetic field B. Then we could choose any unit vector, u, orthogonal to
the beam’s direction, and set up a Stern-Gerlach device with orientation u,
inducing an inhomogeneous magnetic field as described above, but now with
dominant direction u. From the rotational symmetry of physical space, the
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electron beam will behave just as before: half of the electrons will be deflected
in the +u-direction, half in the —u-direction, but the amount of deflection will
always be the same, corresponding to a u-component of angular momentum of
magnitude % This is quite bizarre, because (thinking classically) it seems to
suggest that each electron is spinning at the same rate around every axis, with
half of them spinning clockwise, half counter-clockwise! As described below
(belief 2), one way out of this difficulty is to give up on the idea that individual
electrons possess a definite angular momentum, and instead think in terms of

definite probabilities for measurement outcomes.

2.2 Modeling spin

As P finishes his description of various Stern-Gerlach experiments?, M is
stunned. Nevertheless, these things have been revealed through careful ex-
periment, and there is no denying them. The question is: how to model this
phenomenon? Just as P and M made a short list of shared intuitions that
led to their model of physical space in Chapter 1, they now make a list of
shared beliefs about the electron, coming from their knowledge of the Stern-
Gerlach experiments. If u is a unit vector in physical space (V, (,)), then SGu
denotes a Stern-Gerlach device producing an inhomogeneous magnetic field
with dominant direction u.

1. An electron passing through an SGu will return an angular momentum
measurement of i%, which we think of as “spin up” and “spin down”
along the direction u;

2. Until we make a measurement with an SGu, a particular electron may
have no definite spin along u, but it does have a definite probability of
returning each of the values :I:% when measured by an SGu;

3. If an electron exits an SGu spin up, then it will measure spin up if
measured immediately by a successive SGu. Likewise, if an electron
exits an SGu spin down, then it will measure spin down if measured
immediately by a successive SGu;

4. More generally, if the angle between u and u’ is «, then an electron that

. . . . . e 2
exits an SGu spin up will measure spin up with probability cos (%)

if measured immediately by an SGu’. Similarly, an electron that exits

an SGu spin down will measure spin down with probability cos? (3) if

2
measured immediately by an SGu'.

20ne can imagine a number of different experiments involving multiple Stern-Gerlach
devices arranged in sequence, with different orientations (see [22, pp. 5-9]). Beliefs 3 and 4
come from the results of such experiments



Spinor Space 23

P thinks about this list for a while, and observes that together these beliefs
imply that measurement with a Stern-Gerlach device does something to the
electron. Indeed, by beliefs 1 and 3 he can produce electrons that will measure
spin up along u with probability 1, by blocking the electrons that emerge spin
down from the SGu. Given such a beam of electrons, belief 4 says that if
u’ is orthogonal to u, then half of the electrons will measure spin up when
measured by an SGu’. But again by 4, the electrons in this spin up along
u’ stream will each measure spin up along u with probability % Thus, the
measurement with SGu’ has changed the definite probabilities announced in
belief 2. M agrees with P and concludes that any successful model of spin will
have to include a concept of measurements as “operating” on spin-states.

Since belief 1 says that there are two distinct measurement outcomes (spin
up and spin down), while belief 2 suggests that general states are some kind of
combination of these possibilities, it seems reasonable to look for a model based
on a 2-dimensional vector space. Roughly speaking, a basis should correspond
to states of definite spin up and spin down (announced by belief 3), while
a general state should be a linear combination of the basis. Moreover, belief
4 (which arises from experimental data) reminds P of Malus’ law about the
intensity of polarized light transmitted through a linear polarizer. M and P
discuss this for a while, and after trying and failing with real vector spaces,
they instead propose the following model involving the complex numbers.?

Definition 2.1. Spinor space is a two-dimensional complex inner product
space (W, {|})). The spin-states of an electron are represented by unit vectors
in W, and two unit vectors represent the same spin-state if one is a scalar
multiple of the other. That is, the unit vectors w and w' represent the same
spin-state if and only if w = e’®w’ for some 6 € R.

Recall that a complex inner product space is a complex vector space W
together with a function (|): W x W — C such that if « € C and a,a’,b € W,
then*

i) (aa+a’|b) = a* (alb) + (a'|b) (conjugate-linear in first component)?;

3The reader may well wonder why it is necessary to employ complex numbers. While
there are a variety of reasons for the use of complex numbers in quantum mechanics, the
immediate reason in terms of our current story is that if we were to use real numbers,
then we would need to find a natural way of translating rotations of physical space R? into
rotations of R2. But there is no relationship between the rotation groups SO(3) and SO(2)
that is suitable for this purpose. As we will see in the course of this chapter, there is an
extremely elegant relationship between the groups SO(3) and SU(2), the analogue of the
rotation group for C2, and this relationship plays a central role in the theory of quantum
mechanical spin.

4Here, o* denotes the complex conjugate of a complex number a.

5We follow the convention common in the physics literature of defining a complex inner
product to be conjugate-linear in the first component and linear in the second. Mathemati-
cians usually do the opposite, and take inner products to be linear in the first component
and conjugate-linear in the second. This difference in conventions can lead to confusion, so
beware.
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ii) (a]b) = (bla)” (conjugate symmetry);
iii) (ala) > 0 with equality if and only if a =0 (positive definite).

Exercise 2.2. Show that conditions i) and i) for an inner product imply
linearity in the second component: (alab +b') = a (alb) + (alb’).

As in the real case, an inner product on W determines a norm |a| :=
/(ala). Moreover, the Cauchy-Schwarz inequality holds: |(a|b)| < ||al|||b]| for
all a,b € W. Two vectors a and b are defined to be orthogonal in (W, (|)) if
and only if (a|b) = 0.

Exercise 2.3. Suppose that (X, (])) is a complex inner product space. Show
that the inner product {|) is uniquely determined by the corresponding norm.
(Hint: compute ||x1 + X2||? and ||x; + ix2||?>. Compare ezxercise 1.3).

Example 2.4. Fix an integer n > 1, and consider the set C" of all n-tuples
of complex numbers:

C" = {(o1,q2,...,an) | a; € C}.

The set C™ is an n-dimensional complex vector space under the operations of
component-wise addition and scalar multiplication. Moreover, define the dot
product of two vectors in C™ by the formula

(061,0627~ .. 7an) : (ﬁl)ﬁQa e 7571) = Zarﬁz
i=1

Then -: C* x C™* — C defines an inner product on C". The complex inner
product space (C™,-) is called complex Euclidean n-space.

After unpacking all of this terminology, M reiterates the meaning of defi-
nition 2.1: the possible spin-states of an electron are given by the unit vectors
in (W,(|)), where two unit vectors correspond to the same spin-state if and
only if they differ by a complex number of modulus 1, called a phase. This
phase ambiguity is somewhat mysterious at this point, and the first order of
business is to find a way of producing some quantities associated to spin-states
in a phase-independent way.

To this end, we now present some convenient and powerful notation, intro-
duced by P.A.M. Dirac in 1939 and popularized in his classic textbook [2]. If
we use the symbol v to denote a spin-state, then 1) is actually an equivalence
class of unit vectors in (W, (])). Nevertheless, we will generally think of ¢ as
an actual unit vector, always remembering that the vector is only well defined
up to a phase €. We will often write |¢)) instead of 1 to emphasize that we
have chosen a unit vector in W to represent the spin-state. The unit vector
|1} is called a ket, being the latter half of a bracket (a|b). Hence, every ket
determines a unique spin-state, but each spin-state is represented by infinitely
many kets, any two of which differ by a phase e¢?®. For each ket |¢), there is a
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corresponding bra (1|, which is the linear mapping from W to C given by the
inner product®:

(¥l(a) == (Yla) = (afy)".

We must remember that the inner product (i|a) depends on a choice of a
representing ket |¢), and not only on the spin-state.

Exercise 2.5 (&%’). Show that the bra corresponding to the ket €¥|y) is
e~ (|, More generally, if [¢0) = ci|d1) + cald2) is a complex linear com-
bination, then (Y| = c¢i{d1] + c3{p2].

The next proposition eliminates the phase ambiguity in our description
by showing that spin-states are in one-to-one correspondence with orthogonal
projections onto lines in W.

Proposition 2.6. There is a one-to-one correspondence between spin-states
and rank one orthogonal projections on W :

P = Py = ) (¥l
Here, Py: W — W is given by the formula Py(a) = (y|a)|y).

Proof. Suppose that v is a spin-state, and choose a representing ket [1)). Any
other ket representing ¢ is of the form e[+)), and hence spans the same
complex line Cl¢) contained in W. Any a € W can be written uniquely as
a=b+b" for b € C|¢p) and b € (C|h))*, the orthogonal complement to
C|+). In terms of this decomposition, the orthogonal projection onto the line
C|e) is defined as Py(a) = Py(b +b™) := b (see figure 2.5). But note that
b = (¥|a)|y) =: |¢)(¥|(a), so that Py = [1)(¢| as claimed.

Conversely, suppose that P: W — W is any rank one orthogonal pro-
jection on W. Choose a basis ket |1} for the 1-dimensional range of P, and
note that any other choice differs from |¢)) by a phase €. It follows that P
determines a unique spin-state i such that P = Py. O

Note that if two kets differ by a phase, then so will their projections onto
the line spanned by :

Py(e]g)) = ¢ Py(|9))-

We can eliminate this phase dependence by taking the squared norm of the
projections:

1Po(e®1oD1? = 1P (|o)1 = [l PLwle)* = [(wlo)I%,

where we have used the fact that € has modulus 1 and |¢)) has unit norm.
Thus, we have suceeded in producing a quantity that depends only on the

6That is, (4| := (¢|=): W — C is an element of the dual space of W.
7& indicates an exercise with a solution in appendix A.4.
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a

Cly)

FIGURE 2.5: Orthogonal projection onto the complex line spanned by [),
with one real dimension suppressed.

spin-states 1 and ¢, and not on the choice of representing kets. Note that
the real number |(1)|¢)|? is between 0 and 1, since it is the squared length
of the orthogonal projection of a unit vector (alternatively, this follows from
the Cauchy-Schwarz inequality). Hence, we may interpret this number as a
probability, as recorded in the following interpretation, fundamental to all
that follows.

Probability Interpretation: Given two spin-states ¥ and ¢, the
probability that ¢, when measured with a “W-device”, will be found
in the state ¥ is given by the squared modulus of the inner product

[(¥le)]*.

But what kind of thing is a “t-device”? To answer this and to make a
connection with their list of beliefs coming from the Stern-Gerlach experi-
ments, M and P need to establish a connection between spinor space (W, (|))
and physical space (V,(,)). Observer P is eager to help, so as in the previ-
ous chapter, he chooses a right-handed orthonormal basis {u,uy,uz} for V
which yields the identification of physical space with (R3,-) together with the
rotation action of SO(3). Henceforth, we will denote a Stern-Gerlach device
SGusz by SGz since such a device is oriented along P’s positive z-axis if P
labels his three coordinate axes by x,y, z as usual.

Having thus installed his SGz, every electron that P measures comes out
either spin up or spin down along the z-direction (beliefs 1 and 3). These two
outcomes correspond to two distinct spin-states, represented by kets |+z) and
|—2) in W, uniquely determined up to individual multiplication by phases.
Moreover, these kets form an orthonormal basis of W. Indeed, belief 3 says
that the probability of |+z) being found in the state |+z) upon measurement
is 1, while the probability of it being found in the state |—z) is 0. Since these
probabilities are given by the squared absolute values of the inner products,
the kets are orthonormal as claimed.

Thus, an arbitrary ket |¢) in W can be written uniquely as
|¢) = cq|+2z) +c—|—2), where ci,c_ are complex numbers satisfying
lco|? + |e_|? = 1. Moreover, the probability that an electron with spin-state
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¢ will be spin up when measured with P’s SGz is given by
[(+219)* = [(+2les[+2) + (+2le-|=2)* = |es |

Similarly, |c_|? is the probability that ¢ will be spin down when measured
by an SGz. Thus, the model nicely captures belief 2: general spin-states are
superpositions of the spin up and spin down states, with coefficients that de-
termine the definite probabilities for measurements. The complex coefficients
¢y, c— are called probability amplitudes.

The preceding discussion shows that every unit vector in physical space
yields an ordered pair of orthogonal spin-states. In particular, P’s choice of
basis for physical space (together with his installation of an SGz) has deter-
mined an orthonormal basis for spinor-space W, up to phases. Continuing with
her investigation from Chapter 1, observer M wonders how a different choice
of basis for V' would change the basis for W7 Before we take up her question,
we pause to remind the reader of some different types of linear operators on
complex Euclidean n-space.

2.3 Complex linear operators and matrix groups

This section follows the pattern of section 1.2, extending the results ob-
tained there for real linear operators to the complex case. Most of the proofs
extend easily to the complex situation, so we only briefly mention the neces-
sary changes.

Suppose that L: C* — C™ is a linear operator, and let € := {ej1,es,...,€,}
denote the standard basis of C™ (see example 2.4) . Then L is represented (with
respect to €) by an n x n matrix of complex numbers, which we also denote
by L:

n
L= [Lz_]] where L(ej) = ZLijei.
i=1
The proof of proposition 1.7 works just as well in the complex case to show
that L is an automorphism of C™ if and only if the matrix L is invertible.

Definition 2.7. The group of all invertible n X n complex matrices, denoted
GL(n,C), is called the complex general linear group. It is the symmetry group
of the vector space C™.

Definition 2.8. If B is a complex m X n matriz, then its conjugate transpose
Bt is the n x m matriz obtained by taking the ordinary transpose of B and
then replacing each entry with its complex conjugate:

(BY)ij := Bj;.
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Proposition 2.9. Suppose that L € GL(n,C). Then L preserves the dot
product on C™ if and only if L~ = LT, the conjugate transpose of the matriz
L.

Proof. Adapt the proof of proposition 1.9 by replacing the ordinary transpose
with the conjugate transpose. O

Definition 2.10. The group of all invertible n xn complex matrices satisfying
L= = LT, denoted U(n), is called the unitary group. It is the symmetry group
of complex Euclidean n-space (C", ).

Exercise 2.11. Suppose that L: C* — C™ is a linear operator. Show that
L € U(n) if and only if L preserves the norm of vectors: |[Lwl| = ||w]|
for all w € C". (Hint: use proposition 2.9 and compute |L(v + w)|? and
| L(v +iw)||?>. Compare exercise 1.11.)

Proposition 2.12. The determinant of any unitary matriz is a complex num-
ber of modulus 1.

Proof. If L is unitary, then I, = LTL. Taking the determinant of both
sides yields 1 = det(I,) = det(LTL) = det(L")det(L) = det(L)* det(L) =
| det(L)|?. It follows that |det(L)| = 1 as claimed. O

Definition 2.13. The special unitary group is the subgroup SU(n) C U(n)
of unitary matrices with determinant 1.

Example 2.14. The case n =1 is somewhat more interesting in the complex
case than in the real case:

e GL(1,C) = C¥*, the group of nonzero complex numbers;
e U(l) = {e? | § € R}, the phase group;
o SU(1) = {1}, the trivial group.

Exercise 2.15. Show that the unitary group U (1) is isomorphic to the special
orthogonal group SO(2).

Example 2.16. The complex general linear group GL(2,C) consists of 2 x 2
complex matrices with nonzero determinant:

GL(z,C)z{[?; ?] a&—ﬁ'y;«éo}.

As in the real case, a 2 x 2 complex matriz is an element of GL(2,C) if and
only if its columns form a basis for C2.
Writing out the unitarity condition Iy = LT L we find

L o] _[e v ][a B]_[lafP+hP aB+y7s
0 1] [ B o ||y o) |Batdy [BP+]P
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Thus, the conditions for L to be unitary are |a|? + |v]? = |B]2 + |§]* = 1 and
o* B+ v*§ = 0. Interpreting these relations as dot products, we see that L is
unitary exactly when the columns of L have unit norm and are orthogonal to
each other. Thus, a 2 X 2 complex matriz is an element of U(2) if and only if
its columns form an orthonormal basis for (C2,-).

If in addition we require that det(L) = 1, then using the formula for the
inverse of a 2 x 2 matriz, we find that the unitarity condition L' = L1
becomes

Ck* 'Y* _ 5 _ﬁ g% o *
{5* (5*]_{—7 o <~ a=0" and p=-—7".
Thus, we find that the special unitary group is
e
suw={| G O] 1larrisr-1}.
This group will play a major role in the remainder of our story.

Exercise 2.17. Generalize the analysis in the preceding example to show that
forallm > 1:

a) ann x n complex matriz L is in GL(n,C) if and only if the columns of
L form a basis for C™;

b) an n x n complex matriz L is in U(n) if and only if the columns of L
form an orthonormal basis for (C",).

¢) Let L: C* — C™ be a linear operator, and v := {uy,...,u,} be any
orthonormal basis for (C",-). Denote by [L], the matriz representing
L in the basis v. Then L is a unitary transformation if and only if
[L]iY = [L];l. (Hint: adapt the proof of proposition 1.17.)

Now we rejoin observers M and P, who are still puzzling over spinor space.
Recall M’s question: how would a different choice of basis for physical space
V' affect the basis for spinor space W obtained by the installation of a Stern-
Gerlach device along the third axis? To study this question, P continues to
consider the basis v := {|+2),|—2)} for W coming from his third basis vec-
tor ug in physical space. But M considers the different orthonormal basis
v = A{|+2'),|—2")} for W that arises from her basis 8’ for V, together with
her installation of an SGz’ oriented along her third basis vector uj. Just as
in Chapter 1, these two orthonormal bases for W determine distinct isomor-
phisms &, ®’: (W, (])) — (C2,-), defined by sending ~,~’ respectively to the
standard basis of C2. As before, in order to determine the translation between
their two descriptions of spinor space, we consider the automorphism of (C2,-)
defined by the composition ® o ®~!. The situation is pictured in the following

diagram:
W _—— W
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By the discussion above, the automorphism ®' o ®~! may be identified
with an invertible matrix of complex numbers, i.e. an element of GL(2,C).
Moreover, because the automorphism & o ®~! preserves the dot product, the
corresponding matrix is actually an element of the unitary group U(2).

Exercise 2.18. Show that the matriz of ® o ®~1 with respect to the stan-
dard basis on C? is the change of basis matrix from + to +'. (Compare exer-
cise 1.18.)

Going further, M observes that by exploiting phases, she can change her
basis kets (without changing the corresponding spin states) to arrange for the
matrix to be an element of the special unitary group SU(2). Indeed, setting
§ :=det(®' o ®1), proposition 2.12 shows that |§| = 1.

Exercise 2.19. Choose a square oot of &, and denote it by v/3. Show that
Vi e U(1), and hence may be used as a phase. Then consider the orthonormal

basis of W given by v" = {ﬂ\+z’>7\/g|—z’)}, This basis, while distinct
from +', corresponds to the same pair of orthogonal spin-states. As usual,

sending the basis " to the standard basis of C* determines an isomorphism
" (W,(])) = (C?,-). Use exercise 2.18 to show that

1
D" odl= —Pod
Vo ’

and conclude that ®" o ®~1 is an element of SU(2).

We now assume (after adjustment by a phase as above) that M’s basis
kets |£2') yield an automorphism ® o ®~! which is an element of the special
unitary group SU(2). Following in the pattern of his comments about SO(3)
in Chapter 1, observer P summarizes the situation as follows: his choice of
the 2-basis v leads to the identification ®: (W, {(|)) — (C2,-), sending v to the
standard basis of C2. Then M’s choice of basis 7/ determines an automorphism
B of (W,{(])) defined by B(|+z)) = |[+7z’) and B(|—z)) = |—2'). In terms of P’s
description, the automorphism B is represented with respect to the basis v by
a matrix B := [B],. Explicitly, we have B := [§;;] where

|42y = Br1|+2) + Bo1|—2) and |—2) = Bia|+2) + Bao|—2).

It follows from exercise 2.18 that B is the inverse of the special unitary matrix
®’ o @71, Thus, the matrix B € SU(2) that describes (with respect to )
the automorphism that moves the z-basis onto the 2’-basis is the inverse of
the change of basis matrix describing the translation from P’s description to
M’s. Conversely, an arbitrary element of SU(2) will describe for P a way of
superposing the z-basis to obtain a new orthonormal basis for W, hence a new
pair of orthogonal spin-states.

Thus, SU(2) acts on spinor space (C2,-) similarly to the way SO(3) acts
on physical space (R3,-). But M wants an answer to the following question:
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if the rotation A € SO(3) connects P’s right-handed orthonormal basis for
V to M’s, how can we determine the corresponding matrix B € SU(2) that
connects P’s z-basis for W to M’s 2’-basis? This is really a question about the
relationship between the action of SO(3) on R? and the action of SU(2) on
C?. Before considering the actions, we should ask a more basic question: what
is the relationship between the groups themselves?

2.4 The geometry of SU(2)

The group SU(2) consists of unitary 2 x 2 matrices with determinant 1.
Thus, the 2 x 2 complex matrix B is in SU(2) if and only if Bf = B~! and
det(B) = 1. In example 2.16, we discovered the explicit form of these matrices:

B:[_Oé* (f*} a,B3€Cand |a* + |B]* = 1.

If we write a = a1 + ia2 and B = by + iby for a;,b; € R, the condition on
«a and 8 becomes
a?+aZ+ b3+ b2 =1,

which defines the unit sphere S® C R?*. Thus, as a topological space, SU(2)
is the three-dimensional unit sphere. In particular, it is path connected and
simply connected?®.

In an effort to establish a connection between the groups SU(2) and SO(3),
we would like to discover a natural way in which SU(2) acts on R? via rota-
tions. We begin with the observation that SU(2) acts on itself by conjugation:
(B,M) +— BxM := BMB~! defines an SU(2)-action on SU(2) in the sense
of definition 1.20. Thinking of the copy of SU(2) being acted upon as the
3-sphere S3, we have an action of SU(2) on S3. This is close to what we want,
because the tangent space to S® at any point is a copy of R3.

2.4.1 The tangent space to the circle U(1) = S!

In order to motivate and clarify the notion of the tangent space to SU(2) =
S3 C R*, consider the simpler case of the group U(1) consisting of complex
numbers of modulus 1. Note that a complex number z = z + iy € U(1) if and
only if 22 +y? = 1, so U(1) is the unit circle S* C R?.

From figure 2.6, it is clear that the tangent space to the circle S' at the
point (1,0) is the vertical line x = 1. Since we want our tangent spaces to

8Path connected means that any two elements of 53 may be joined by a continuous path
in S3. Simply connected means that all loops in S® may be continuously contracted to a
point, which formalizes the idea that S3 has “no holes”.
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FIGURE 2.6: The tangent line to the circle S* at the identity.

be closed under vector addition and scalar multiplication, we will refer to
the vertical line * = 1 as the translated tangent space, and use the term
tangent space for the vertical line & = 0, which is a vector subspace of R2.
Since the point (1,0) corresponds to the identity element z = 1 of the group
U(1), we denote this tangent space by T1S* and write

T1S'={iy|yc R} =iR CC.
The translated tangent space is then given by
1+T71S'=1+iR CC.

But how could we determine this tangent space without relying on the
picture? Well, suppose that ¢ : (—¢, ) — C = R? is a one-to-one differentiable
curve with the property that c(t) € U(1) = S for all t and ¢(0) = 1 € U(1).
That is, ¢ is a parametrization of the curve S! near the identity. Then the
derivative ¢(0) € R? is a tangent vector to S! at the identity. The totality of
all such tangent vectors forms the tangent line 77 S'. But note that we have
1 =c(t)c(t)* for all ¢, since each ¢(t) € U(1) is a complex number of modulus
1. Taking the derivative with respect to ¢ and evaluating at ¢ = 0 yields:

0 ¢(0)c(0)* + ¢(0)¢c(0)*
= ¢(0) + ¢(0)*.

We see that the derivative ¢(0) must be a purely imaginary complex number:
¢(0) = 4y for some y € R. Thus, this computation reproduces the description
of the tangent space T7.5! provided above.

Note that every element of ¢{R does indeed arise from a curve c. Indeed,
for any y € R, consider the curve c(t) := € € U(1). Then ¢(0) = 1 and
¢(0) = iy.
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2.4.2 The tangent space to the sphere SU(2) = S3

We wish to determine the tangent space at the identity of SU(2) by follow-
ing the strategy described for the circle group U(1) in the previous section.
Recall that SU(2) = S% C R*. It will be convenient to make the explicit
identification of the element (xg, 1,2, 23) € R* with the matrix

To +1r3 X9+ 1T
—T9 +1x1 X9 — 1T3

Such a matrix is in SU(2) if and only if 23 + 2% + 23 + 22 = 1, which defines
the three-dimensional sphere S C R*. The identity matrix I corresponds to
the point (1,0,0,0), and we denote the tangent space to S at this point by
T;53.

So suppose that ¢ : (—¢, €) — R* is a one-to-one differentiable curve satis-
fying c(t) € SU(2) = S3 for all ¢t and ¢(0) = I € SU(2). Then as in the case
of the circle, the derivative ¢(0) € R* is a tangent vector to S? at the identity,
and the totality of all such tangent vectors forms the tangent space 77.53. But
since the curve c lies entirely within SU(2), we have I = c(t)c(t)" for all ¢.
Taking the derivative and evaluating at ¢ = 0 yields

0 = ¢0)c(0) 4 ¢(0)e(0)t
= ¢(0) + ¢(0)T.

From this, we see that the derivative must be a skew-hermitian matrix:
¢(0)" = —¢(0). But é¢(0) corresponds to a vector (zg,z1,72,73) € R*, and
this vector yields a skew-hermitian matrix if and only if zo = 0. It follows
that

. 1T T + 1x
é(0) = 3 2 for some x1, 22, z3 € R.
—X9 + 121 —123

Note that this matrix has trace zero in addition to being skew-hermitian. We
will show below that every such matrix is the tangent vector of some curve c,
so that the tangent space is

il’g X2 +Z£L’1
TISg:{[ —z9 +iwy  —ix3 } |x1,x2,x36R}.

Recall that in the case of U(1) = S!, we found that the tangent space was
i times the vector space R. Following in this pattern, consider the real vector
space Hy(2) of 2 x 2 hermitian matrices with trace zero. Thus, X € Hy(2) if
and only if XT = X and tr(X) = 0.

Exercise 2.20. Show that a general element of Hy(2) looks like

X3 Trq — i.L“Q

X = .
Tr1 +1T2 —x3

T1,29,23 € R.

Check that the tangent space to S® at the identity may be described as T;S® =
1Hp(2).
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As promised, we now wish show that every element of iHy(2) does arise
from a curve ¢ in the manner described above. Recall how we did this for the
circle at the end of the previous section: given an element iy € iR, we wrote
down the curve c(t) := e with tangent vector iy at t = 0. We can make an
analogous argument for the sphere S® provided we have a suitable exponential
function for matrices. In the next section we show that such a function exists.
For now we will simply assume the existence of the matrix exponential function
together with the properties listed below in proposition 2.21. So suppose that
X € Hy(2) is an arbitrary 2 x 2 hermitian matrix with trace zero. Then define
c(t) := exp(itX), which defines a differentiable curve in the space of 2 x 2
matrices with complex entries. In fact, in proposition 2.31 we will see that
c(t) € SU(2) for all t, so that we have a curve in SU(2) = S as desired.
Moreover, ¢(0) = I and é¢(0) =iX € iHy(2), thus showing that iX € TrS3.

2.4.3 The exponential of a matrix

If A is an arbitrary nxn complex matrix, we want to define a matrix exp(A)
with properties that generalize the usual exponential for complex numbers.
We will do so by making use of the power series for the ordinary exponen-
tial function, replacing the scalar argument by a matrix. In order to justify
this construction, we will need to extend some familiar analytic results to the
setting of matrices, which is the purpose of this section. For the convenience
of readers wishing to skip the analytic justification, we begin with a propo-
sition that lists the basic properties of the matrix exponential; after reading
proposition 2.21, the reader can safely jump to proposition 2.31.

Proposition 2.21. There exists a function exp: M(n,C) — GL(n,C) that
assigns to each n X n matrix A an invertible matriz exp(A) defined by the
following absolutely convergent power series:

| —

Ak
! .

o

exp(4) := Z
k=0

This matrix exponential function satisfies the following properties:
0) exp(0) = I;
b) If AB = BA then exp(A + B) = exp(A) exp(B) = exp(B) exp(4);
¢) exp(A)~" = exp(—A4);
d) If B is invertible, then exp(BAB™') = Bexp(A)B~1;

e) For a fized matriz A, the function c¢: R — GL(n,C) defined by c(t) :=
exp(tA) is differentiable, and ¢(t) = Ac(t) for all t € R. In particular,
¢(0) = A.
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