Math 565, Problem Set 6: due Friday, February 16

- 1. Prove that the three parts of the quadratic reciprocity theorem are equivalent to the following three concise formulas, where p and q are odd primes:
 - a) $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$
 - b) $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$
 - c) $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$
- 2. Suppose that the plaintext space \mathcal{M} of a cryptosystem is the set of bit strings of length 2b. Let e_k and d_k be the encryption and decryption functions associated with a key $k \in \mathcal{K}$. The problem describes a method of turning the original deterministic cryptosystem into a probabilistic cryptosystem. Alice sends Bob an encrypted message by performing the following steps:
 - Alice chooses a *b*-bit message m' to encrypt.
 - Alice chooses a string r consisting of b random bits.
 - Alice sets $m = r||(r \oplus m')$, where || denotes concatenation of strings and \oplus denotes bitwise addition in \mathbb{F}_2^b . Notice that m is a string of length 2b.
 - Alice computes $c = e_k(m)$ and sends the ciphertext c to Bob.

Just to be clear, here is an example of the computation of m from m' in the case b = 3: suppose m' = 011 and r = 101. Then $r \oplus m' = 110$, so m = 101 || 110 = 101110.

- a) Explain how Bob decrypts Alice's message and recovers the plaintext m'. We assume, of course, that Bob knkows the decryption function d_k .
- b) If the plaintexts and the ciphertexts of the original cryptosystem have the same length, what is the message expansion ratio of the new probabilistic cryptosystem?
- c) More generally, if the original cryptosystem has a message expansion ratio of μ , what is the message expansion ratio of the new probabilistic cryptosystem?