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. . . you are surprised at my working simultaneously in literature and in
mathematics. Many people who have never had occasion to learn what
mathematics is confuse it with arithmetic and consider it a dry and
arid science. In actual fact it is the science which demands the utmost
imagination. One of the foremost mathematicians of our century says
very justly that it is impossible to be a mathematician without also
being a poet in spirit. It goes without saying that to understand the
truth of this statement one must repudiate the old prejudice by which
poets are supposed to fabricate what does not exist, and that imag-
ination is the same as “making things up.” It seems to me that the
poet must see what others do not see, and see more deeply than other
people. And the mathematician must do the same.

Sofia Kovalevskaya, 1890

It has been written that the shortest and best way between two truths
of the real domain often passes through the imaginary one.

Jacques Hadamard, 1945
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CHAPTER 1

NUMBERS

1.1. Complex Numbers

Real numbers provide the context of the calculus you have learned
so far, both one- and multi-variable. This course will develop some
new topics in the context of the complex numbers, commonly used in
pure and applied mathematics, physics, and engineering. We begin by
giving a quick introduction to the algebra of these numbers, and then
spend the rest of this section describing their geometry.

Start by introducing a new number i with the property that

i2 = −1.

This is the famous square root of −1 that you may have heard about.
Consider all expressions of the form a+ bi, where a and b are real num-
bers. Now do algebra with these expressions following the usual rules
of associativity, distributivity, and commutativity, always remembering
that i2 = −1:

Addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

Multiplication: (a+ bi)(c+ di) = ac+ adi+ bci+ bdi2

= (ac− bd) + (ad+ bc)i

1
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Definition 1.1. Expressions z = a+bi are called complex numbers.
The real number a is the real part of z and denoted Re(z). Similarly,
the real number b is the imaginary part of z and denoted Im(z). We
use the symbol C to indicate the set of all complex numbers.

Example 1.2. Suppose that z = 3 + 2i and w = 1− 5i. Then

z + w = (3 + 2i) + (1− 5i)

= (3 + 1) + (2− 5)i

= 4− 3i

zw = (3 + 2i)(1− 5i)

= 3− 15i+ 2i− 10i2

= (3 + 10) + (−15 + 2)i

= 13− 13i.

Example 1.3. For another example, suppose that z = 1−
√

2i and
w = 1

3
+
√
2
3
i. Then

z + w = (1−
√

2i) +

(
1

3
+

√
2

3
i

)

=

(
1 +

1

3

)
+

(
−
√

2 +

√
2

3

)
i

=
4

3
− 2
√

2

3
i

and

zw = (1−
√

2i)

(
1

3
+

√
2

3
i

)

=
1

3
+

√
2

3
i−
√

2

3
i− 2

3
i2

=

(
1

3
+

2

3

)
+

(√
2

3
−
√

2

3

)
i

= 1 + 0i

= 1.

Remark 1.4. The pejorative term “imaginary” is a holdover from a
time when people were skeptical about the existence of these numbers,
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first introduced by Italian mathematicians in the 16th century in their
efforts to solve polynomial equations. If you also feel a bit uneasy at
this point, don’t worry: one of the main goals of this course is for you
to become as comfortable with complex numbers as you are with real
numbers. By the end, we hope you will agree that complex numbers
are no more imaginary than any other numbers.

We visualize the complex numbers C as a plane, with horizontal
axis corresponding to the real part, and vertical axis to the imaginary
part:

Re

Im

a

bi
a+ bi

c

di
c+ di

Definition 1.5. If z = a + bi is a complex number, then its mag-
nitude |z| =

√
a2 + b2 is the distance from z to the origin. The word

modulus is also often used for the magnitude of a complex number.

z = a+ bi

a

bi |z|
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The proposition below records the fact that the magnitude of a
complex number z is greater than or equal to the magnitude of Re(z)

and the magnitude of Im(z).

Proposition 1.6. Suppose that z = a + bi is a complex number.
Then

|z| ≥ |a| and |z| ≥ |b|.

Proof. Geometrically, this is just the statement that the hypotenuse
of a right triangle is longer than each leg (see picture above). Here is
the corresponding algebraic argument for the real part a:

|z|2 = a2 + b2 ≥ a2 = |a|2.

Taking the square root of both sides yields |z| ≥ |a| as claimed. A
similar argument shows that |z| ≥ |b|. �

What do the operations of addition and multiplication look like
geometrically? For addition, we have the parallelogram law, familiar
from vector addition in R2.

Parallelogram Law for Complex Addition: the sum of z = a+ bi

and w = c+di is the vertex across from the origin in the parallelogram
shown below:

z = a+ bi

w = c+ di

z + w = (a+ c) + (b+ d)i
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The following result tells us how the magnitude relates to complex
addition. While simple, it is of fundamental importance, and will be
used several times throughout the course:

Proposition 1.7 (The Triangle Inequality). Suppose that z and w
are complex numbers. Then

|z + w| ≤ |z|+ |w|.

Proof. We will content ourselves with a geometric justification;
see Problem 1.7 for an algebraic argument. Consider the triangle shown
in Figure 1.1, formed from half of the parallelogram determined by z
and w. The picture shows that the stated inequality is basically just
the assertion that “the shortest path between two points in the plane
is the straight line.” �

Exercise 1.1. When does equality occur in the statement of the
triangle inequality?

In order to understand the geometric meaning of complex multipli-
cation, we need to think about the plane in polar coordinates.

w

z

z + w

|w|

|z|

|z + w|

Figure 1.1. The triangle inequality
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Definition 1.8. If z is a complex number, then the polar coordi-
nates of z are given by the pair of real numbers (r, θ) where

r = distance from the origin = |z|

and
θ = angle from the positive real axis.

The angle θ is called the argument of z and denoted arg(z). Note that
the argument θ may be replaced by θ′ = θ + 2πn for any integer n
without changing the number z. The term phase is also often used for
the argument of a complex number, especially by physicists.

z = a+ bi

θ

r

a

bi

Trigonometry and the Pythagorean Theorem allow us to determine
the real and imaginary parts of z if we know its polar coordinates, and
vice-versa. Referring to the picture above:

a = r cos(θ) , b = r sin(θ)

and

r =
√
a2 + b2 , θ =


arctan(b/a) if a > 0

arctan(b/a) + π if a < 0

π/2 if a = 0 and b > 0

−π/2 if a = 0 and b < 0.

Here, arctan: R→ (−π/2, π/2) is the inverse of the tangent function.



1.1. COMPLEX NUMBERS 7

Definition 1.9. Let z be a complex number. Writing z = a + bi

expresses z in its cartesian form. The polar form of z is

z = r cos(θ) + ir sin(θ) = |z|(cos(θ) + i sin(θ)).

1− i

θ = −π
4√

2

1

−i

Example 1.10. Let’s find the polar form of the complex number
z = 1− i, shown on the picture above. The magnitude is given by

|z| =
√

12 + (−1)2 =
√

2.

Since the real part of z is positive, the argument is

θ = arctan(−1/1) = arctan(−1) = −π
4
.

So the polar form of z is

z =
√

2(cos(−π/4) + i sin(−π/4)).

Note that we can equally well use the argument −π/4+2π = 7π/4 and
write

z =
√

2(cos(7π/4) + i sin(7π/4)).

The next exercise reveals the geometric meaning of complex multi-
plication.

Exercise 1.2. Recall the algebraic formula for the product of two
complex numbers a+ bi and c+ di:

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

(a) Express two generic complex numbers z and w in polar form, and
then use the formula above to compute the product zw.
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(b) Check that the arg(zw) = arg(z) + arg(w). You will need to make
use of the trigonometric identities

cos(θ + φ) = cos(θ) cos(φ)− sin(θ) sin(φ)

sin(θ + φ) = cos(θ) sin(φ) + sin(θ) cos(φ).

(c) Finally, check that |zw| = |z||w|.

Rotation-scale Law for Complex Multiplication: Suppose that
z has polar coordinates (r, θ) and w has polar coordinates (s, φ). Then
the product of z and w is the number zw with polar coordinates
(rs, θ + φ). In words: when multiplying complex numbers, we mul-
tiply the magnitudes and add the arguments. See the picture below.

z

w

θ

rφs

zw

θ + φrs

In general, if z has polar coordinates (r, θ), then the effect on w of
multiplication by z is to rotate w by θ and scale its magnitude by r.
Let’s think about the effect of multiplying a fixed complex number w
by various types of complex numbers z:

• If arg(z) = 0, then z is on the positive real axis at a dis-
tance r from the origin, and multiplication by z simply scales
the magnitude of w by the positive real number r:
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z = r

w

zw

• If arg(z) = π, then z is on the negative real axis at a distance
r from the origin, and multiplication by z rotates w by π and
scales its magnitude by r:

z = −r

w

zw

π

• If z has magnitude r = 1, then z is on the unit circle, and
multiplication by z just rotates w by the angle θ = arg(z):
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zw

θ
1

zw

θ

Remark 1.11. Note that if both z and w lie on the real axis, then
complex multiplication is just the usual multiplication of real numbers,
and for this reason we think of the real axis as a copy of the real
numbers, sitting inside the complex plane.

In Example 1.3, we saw that

(1−
√

2i)

(
1

3
+

√
2

3
i

)
= 1.

This means that these two complex numbers are inverses, and so we
write

(1−
√

2i)−1 =
1

1−
√

2i
=

1

3
+

√
2

3
i.

In fact, it is not hard to see that every nonzero complex number z has
an inverse. Indeed, suppose that z has polar coordinates (r, θ). Since
z 6= 0, we know that r > 0, so that r−1 = 1/r exists as a real number.
We are looking for another complex number w so that zw = 1. But
the number 1 has magnitude 1 and argument 0, so we can achieve our
goal if we choose w to have polar coordinates (r−1,−θ), because then
the polar coordinates of zw will be (rr−1, θ + (−θ)) = (1, 0).

So we now know how to find inverses using polar coordinates (see
the left side of Figure 1.2):

if z 6= 0 has polar coordinates (r, θ), then
z−1 has polar coordinates (r−1,−θ).
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z

θ

r

z−1
−θ

r−1

1 = zz−1

z = a+ bi

1 = zz−1

z = a− bi

z−1 = z/|z|2

Figure 1.2. Finding the inverse using polar coordinates
(left) and complex conjugation (right)

Exercise 1.3. Can you convince yourself that every nonzero com-
plex number z has exactly one inverse, i.e., that inverses are unique?

How do we find inverses using cartesian coordinates? To answer
this, it will be helpful to introduce an important operation on complex
numbers.

Definition 1.12. The number z = a − bi is called the complex
conjugate of z = a+ bi. Geometrically, complex conjugation is simply
reflection across the horizontal real axis (see right side of Figure 1.2).

Exercise 1.4. Show that zz = |z|2, so that z−1 = z/|z|2.

We can interpret the previous exercise geometrically as follows, us-
ing the right side of Figure 1.2:

(1) Starting with z = a+ bi, reflect across the real axis to obtain
the complex conjugate z = a − bi; this complex number has
the same magnitude as z, but the opposite argument −θ.

(2) Now scale z to obtain z−1 with magnitude |z|−1. Since z has
magnitude |z|, we must divide by |z|2 = a2 + b2.
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Putting these two steps together yields an explicit formula for the in-
verse in cartesian coordinates:

z−1 =
z

|z|2 =
a− bi
a2 + b2

=
a

a2 + b2
− b

a2 + b2
i.

Example 1.13. To find the inverse of z = 3 +
√

2i, we divide the
complex conjugate by the magnitude squared:

z−1 =
z

|z|2 =
3−
√

2i

32 + 2
=

3

11
−
√

2

11
i.

Example 1.14. Let’s write the complex fraction (1 + 2i)/(1− i) in
the cartesian form a+bi. First of all, note that division by the complex
number 1− i means multiplication by its inverse (1− i)−1. So we begin
by finding this inverse. We have

(1− i)−1 =
1− i
|1− i|2 =

1 + i

12 + (−1)2
=

1

2
+

1

2
i.

It follows that
1 + 2i

1− i = (1 + 2i)(1− i)−1

= (1 + 2i)

(
1

2
+

1

2
i

)
=

(
1

2
− 1

)
+

(
1

2
+ 1

)
i

= −1

2
+

3

2
i.

Your initial introduction to calculus took place entirely in the con-
text of the real numbers R, and this course will take place mainly in
the context of the complex numbers C. Geometrically, this shift repre-
sents a substantial enlargement, since we view the complex numbers as
a two-dimensional plane, with a copy of the 1-dimensional real num-
bers R inside as the horizontal axis. But at the most mundane symbolic
level, not much has really changed: we can add, subtract, multiply, and
divide complex numbers, and all the usual rules of algebra apply (as-
sociativity, distributivity, and commutativity).

If all this feels a bit strange, don’t worry—you will get used to the
complex numbers soon enough. But you might be feeling that things
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are too good to be true: on page 1 we simply assumed the existence
of a number i with the property that i2 = −1, forged ahead with the
rules of ordinary algebra, and everything turned out fine. What is to
stop us from inventing anything we want? Well, nothing prevents us
from investigating the consequences of various hypotheses, and one of
the most powerful and charming aspects of mathematics is the oppor-
tunities for creativity so afforded. This creative aspect of mathematics
is often hidden from beginning students, who understandably tend to
see mathematics as having fixed and inflexible rules. The truth is that
the creativity proper to mathematics is of a highly constrained type:
while we are free to make definitions and hypotheses, most will lead
nowhere of interest or will yield inconsistencies. The magic of the com-
plex numbers is that they enlarge the real numbers in just the right
way to provide a rich computational system, with operations that have
a strong geometric interpretation. Moreover, complex numbers are ex-
tremely useful, having applications not only within pure mathematics
but also in many applied areas such as quantum mechanics and elec-
trical engineering.

As a cautionary and inspiring tale, consider the 19th century Irish
mathematician W.R. Hamilton. Motivated by the utility of the com-
plex number system for working in two dimensions, he wanted to simi-
larly find a way of multiplying triples of real numbers so that it would
be possible to divide by nonzero triples. (Note that the cross product
of vectors doesn’t allow for division, since v×w = 0 whenever v and w

are parallel vectors in R3). He began in the same way we did above,
by considering expressions of the form a+ bi+ cj with a, b, c real and i,
j independent elements satisfying i2 = j2 = −1. But it turns out that
“forging ahead” with the usual algebra simply doesn’t work, as there is
no way to define the product ij without running into inconsistencies.
After a decade of work, Hamilton had a flash of insight leading to a
major breakthrough: although it is not possible to define a multipli-
cation and division on R3, it is possible to do it for R4. The resulting
4-dimensional number system is called the quaternions, and it satis-
fies all the usual algebraic properties except for one: multiplication is
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not commutative. Far from being an exotic curiosity, quaternions have
many applications, for instance to the description of rotations in com-
puter graphics. It turns out that R8 can also be made into something
like a number system with division (called the octonions), except that
the multiplication is neither commutative nor associative! But that is
the end of the line: in a precise sense, the only dimensions for which
a reasonable notion of multiplication exists (so that nonzero elements
have inverses) are 1,2,4, and 8. This startling fact has deep connections
to other areas of mathematics and physics—we encourage you to look
into it for yourself.

Key points from Section 1.1:

• Cartesian and polar forms of a complex number (Defi-
nition 1.9)
• Ability to transform between cartesian and polar forms
(page 6 and Example 1.10)
• Visualization of complex addition as parallelogram law
(page 4)
• Visualization of complex multiplication as rotation-
scaling (page 8)
• Inverse of a complex number (pages 11–12 and Exam-
ple 1.13)

1.2. Roots of Polynomials

We have introduced the complex numbers and started to get com-
fortable with their algebra and geometry. We now want to talk about a
sense in which the complex numbers are “better” than the real numbers,
as a way of justifying their use.

Complex numbers first arose in the effort to find roots of polyno-
mials (recall that a root of a polynomial p(z) is a number a such that
p(a) = 0). You are probably aware that not all polynomials with real
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coefficients have real roots. For instance, consider the quadratic poly-
nomial z2 + 1. For any real number a, substituting z = a yields the
number a2 + 1, which is never zero (in fact, it is always at least 1, since
a2 ≥ 0). This means that z2 + 1 has no real roots. But it does have
complex roots, namely ±i: substituting z = i yields i2+1 = −1+1 = 0,
and similarly for z = −i.

In fact, for every complex number c, the quadratic polynomial z2−c
has complex roots; this is the same thing as saying that there are
complex numbers w such that w2 = c. That is: every complex number
has complex square roots. The next exercise extends this to nth roots
and identifies the roots explicitly.

Exercise 1.5. In this exercise, you will show that every nonzero
complex number has two distinct square roots, and in fact n distinct
nth roots for every n ≥ 1.

(a) (Warm-up) Find two distinct complex numbers w1 6= w2, such that
w2

1 = w2
2 = 1 + i. Hint: use polar coordinates.

(b) Consider the complex number c with polar coordinates (r, θ), where
r > 0 and −π < θ ≤ π. Define the following two complex numbers,
expressed using polar coordinates:

w1 :

(√
r,
θ

2

)
w2 :

(√
r,
θ

2
+ π

)
.

Show that w2 = −w1 and that w2
1 = w2

2 = c. Draw a nice picture
in the case where c = i.

(c) Now fix an integer n > 2 and show that every nonzero complex
number c has exactly n distinct nth roots. Draw a nice picture
of the 6 distinct 6th roots of 1. Hint: use polar coordinates as in
part (b).

Remark 1.15. We need to be careful with the square root notation
for complex numbers. To see why, recall the conventional notation for
square roots of positive real numbers a > 0: we denote the positive
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square root of a by the symbol
√
a, and then the negative square root

of a by −√a. There is no ambiguity here, because every positive real
number has two distinct square roots, one positive and one negative. In
the previous exercise, you showed that every nonzero complex number
z also has two distinct square roots w1 and w2, and that w2 = −w1.
But now there is no consistent way to choose one of these roots as
“the positive one” that deserves the label

√
z. This is a bit subtle, but

important, so we will elaborate further.
For the purposes of this discussion, let’s agree to always use argu-

ments θ from the half-open interval (−π, π]. Furthermore, let’s make
the convention that we will write

√
z for whichever square root w1 or

w2 has argument in the half-open interval (−π/2, π/2]. Note that this
generalizes the notation for square roots of positive real numbers a,
where

√
a has argument 0 and −√a has argument π. This is a fine

and useful convention, but it has some consequences that may surprise
you. We list two:

(1) With our convention, we have
√
−1 = i and

√
−4 = 2i. Also,

we have
√

4 = 2. But then even though (−1)(−4) = 4, we
have

√
−1
√
−4 = i · 2i = 2i2 = −2 = −

√
4. This shows that,

in general,
√
zw 6= √z√w.

z

−1

√
−1 = i

√
z ≈ −i

(2) Consider z = −1− 0.1i, which lies close to −1 but just below
the real axis (see picture above). Then the argument of z is
very close to −π, so by our convention

√
z has argument close

to −π/2 and magnitude close to 1. This means that
√
z is

close to the number −i. But also by our convention,
√
−1 = i.

Thus, even though z is very close to −1, the square roots
√
z
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and
√
−1 are far apart. We will discuss this odd behavior more

fully in Example 1.19.

Here is the takeaway: complex numbers have square roots, but “tak-
ing the square root” is not a well-behaved and unambiguous algebraic
operation. In any particular case, the use of the familiar notation

√
z

depends on establishing a convention (as above), and must be done
carefully.

Now consider a general quadratic polynomial with complex coeffi-
cients: p(z) = az2 + bz + c with a 6= 0. The quadratic formula shows
that p(z) has roots in the complex numbers, given by the familiar ex-
pressions:

w1 =
−b+

√
b2 − 4ac

2a
and w2 =

−b−
√
b2 − 4ac

2a
.

The numbers w1 and w2 are distinct roots of p(z), unless the quantity
b2 − 4ac = 0, in which case the two roots are equal. So: all complex
quadratic polynomials have roots in the complex numbers.

These facts may not be very surprising to you, since you have prob-
ably encountered situations in which the quadratic formula confronts
you with the need to take the square root of a negative number. What
you may not know, however, is that the existence of complex roots does
not depend on the polynomial being quadratic.

Theorem 1.16 (Fundamental Theorem of Algebra). Consider a
polynomial of degree n ≥ 1 with complex number coefficients:

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, an 6= 0.

Then there is a complex number c such that p(c) = 0.

We will not describe a proof of the Fundamental Theorem, as all
proofs (of which there are now many) require non-algebraic ideas com-
ing from subjects such as analysis and topology. In fact, although the
statement of this result has been known and used since the 17th cen-
tury, the first complete proofs were only given in the 19th century.
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However, we can use the Fundamental Theorem to derive a corollary
that tells us a lot about the structure of polynomials.

Corollary 1.17 (Unique Factorization). Consider a polynomial
of degree n ≥ 1 with complex number coefficients:

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, an 6= 0.

Then p(z) factors into a product of linear polynomials as follows:

p(z) = an(z − c1)(z − c2) · · · (z − cn).

The complex roots c1, c2, . . . , cn are not necessarily distinct, but they
are uniquely determined (up to reordering) by the polynomial p(z). In
particular, the polynomial p(z) has at most n distinct complex roots.

Proof. See the optional Section 1.4. �

You should think about this corollary as providing you with a new
way of describing polynomials. For instance, suppose you are thinking
about a particular cubic polynomial, and you want to tell me which one
it is. You could simply say that you are thinking about the polynomial

p(z) = z3 − (11 + 7i)z2 + (25 + 42i)z − 15− 35i,

listing the coefficients a3 = 1, a2 = −11 − 7i, a1 = 25 + 42i, and
a0 = −15− 35i. On the other hand, you could instead tell me that you
are thinking about the polynomial with leading coefficient a3 = 1 and
roots c1 = 1, c2 = 5 + 2i, c3 = 5 + 5i, in which case I would be thinking
about the following expression:

(z − 1)(z − 5− 2i)(z − 5− 5i).

Exercise 1.6. Expand this product and verify that that you get
the same polynomial p(z).

A few points to mention before we move on: if you give me the
second description (leading coefficient an and the roots ci), then I can
easily find the first description (all the coefficients ai) by expanding
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and collecting like terms—this is what you did in the previous exercise.
But the reverse direction isn’t so easy: for 2nd degree polynomials
the quadratic formula does the trick, and there are similar (although
more complicated) formulas for finding the roots of 3rd and 4th degree
polynomials. But it is a surprising fact that for 5th and higher-degree
polynomials, there are no such elementary formulas (involving only
addition, subtraction, multiplication, division, and the extraction of
nth roots)! And here we don’t mean that no one has yet found them,
but rather that it is a proven mathematical truth that no such formulas
exist. If you are interested in learning more, keep your eye out for a
Galois Theory course later in your mathematical education; this story
and its consequences are some of the gems of modern mathematics.

Despite the difficulty of finding the roots of a polynomial, it is useful
to know what they are. Think back to the curve-sketching you did in

x

−1012 3 4 5 6
y−1 0 1 2 3 4 5

|p
(z
)|
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Figure 1.3. Graph of the magnitude |p(z)| for the cubic
polynomial p(z) = z3−(11+7i)z2+(25+42i)z−15−35i,
with roots c1 = 1, c2 = 5 + 2i, and c3 = 5 + 5i shown as
red dots.
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your first calculus course: the real roots of a real polynomial tell you
where its graph crosses the x-axis, and thus help you understand its
shape. Graphs of complex polynomials live in 4 dimensions (2 for the
input variable z and 2 for the output values p(z)), so they are difficult
to visualize directly. But we can instead think about the graph of the
magnitude of the polynomial |p(z)|, which is always a real number (in
fact nonnegative), and hence only requires 1 dimension. So the graph of
|p(z)| lives in 3 dimensions, with the horizontal plane representing the
complex input values z = x+ iy, and the vertical axis the real number
outputs |p(z)|. The magnitude |p(c)| is zero exactly when the complex
number p(c) is itself zero, and so the places where the graph touches
the horizontal plane are the roots of the polynomial p(z). Figure 1.3
shows this graph for the cubic polynomial discussed above.

The Fundamental Theorem of Algebra is our first example of the
complex numbers being “better” than the real numbers: there are real
polynomials without any real roots (such as z2 + 1), but all complex
polynomials have complex roots. Moreover, our corollary states that
all complex polynomials factor uniquely into a product of linear factors
corresponding to the roots, and this factorization gives a good picture
of the structure of the polynomial (for a proof, see the optional Sec-
tion 1.4). In Section 2.1, we provide a second advertisement for the
complex numbers involving some beautiful pictures coming from qua-
dratic polynomials, leading ultimately to the topic of infinite sequences,
one of the main subjects of this course.

Key points for Section 1.2:

• Existence and description of square roots (Exercise
1.5)
• Statement of the Fundamental Theorem of Algebra
(Theorem 1.16)
• Statement of Corollary 1.17 describing the unique fac-
torization of a complex polynomial in terms of its roots
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1.3. Complex Functions

Throughout this course, we will think of complex polynomials as
the basic type of “nice” function, much as you likely thought about real
polynomials as the basic type of “nice” function in your first calculus
course. As a high point, in Chapter 4 we will use polynomials to
approximate more general complex functions. In this section, we set the
stage by talking about the idea of a complex function and investigating
some basic examples.

To begin, recall the notion of a real function f : D → R from one-
variable calculus, where the subset D ⊆ R is the domain of f . At this
level of generality, the function f is simply a rule that assigns to every
real number x inD another real number f(x). In practice, we often deal
with continuous or differentiable functions defined by explicit formulas.
A convenient way of displaying a function is to draw its graph, with the
domain on the horizontal axis, and the output values on the vertical
axis. Figure 1.4 shows the graphs of three familiar functions.

−2 −1 0 1 2
x

0.0

0.5

1.0

1.5

2.0

2.5

y

x2

√x
ex

Figure 1.4. Graphs of three real functions
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Now we turn our attention to complex functions f : D → C, where
the domain D ⊆ C is a subset of the complex plane. Again, such
a function f is just a rule that assigns to every complex number z
in D another complex number f(z). Just as for real functions, in
practice we will deal with nice functions that are defined by explicit
formulas—but one of the main goals of this course is to expand our
notion of what counts as a “formula.” Looking way ahead, in Chapter 4
we will introduce power series as formulas that generalize polynomial
expressions and are able to describe a large class of important and
useful functions.

As mentioned previously during our discussion of complex poly-
nomials, we are not able to directly visualize the graph of a complex
function, because it lives in 4-dimensional space: two dimensions are
required for the domain, and another two dimensions for the complex
output values. So to visualize the behavior of complex functions, we
instead draw two copies of the complex plane side-by-side, the first
representing the domain of inputs, and the second representing the
corresponding outputs.

Example 1.18. Let’s see how this works for the squaring function
s(z) = z2, with domain C, the entire complex plane. To square a
complex number, we double its argument and square its magnitude.
The pictures below shows the effect of squaring on (1) an annular region
in the 2nd quadrant of the complex plane and (2) the vertical line x = 1.
Problem 1.13 at the end of the chapter asks you to investigate some
other subsets of the complex plane.

2i
i

s

1 4
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1

s
2i

−2i

1

Exercise 1.7. In the picture above, let u+iv = s(x+iy) denote the
squaring function, so that the real variables x, y describe the coordinate
axes on the left hand side (inputs), while the real variables u, v describe
the coordinate axes on the right hand side (outputs). Verify that the
squaring function sends the vertical line x = 1 to the sideways parabola
defined by u = 1− 1

4
v2.

Example 1.19. We now wish to define and study a square root
function. Before reading further, you should revisit Exercise 1.5 and
especially Remark 1.15 to appreciate some pitfalls. To deal with these
subtleties, we will choose the domain D of our function carefully:

D = C \ (−∞, 0].

In words, D is obtained from the complex plane C by removing the
nonpositive real axis. Note that every number w in D may be written
uniquely in polar form as w = r(cos(θ) + i sin(θ)) where r > 0 and
−π < θ < π. Then define

g(w) =
√
r(cos(θ/2) + i sin(θ/2)).

The picture below shows the effect of g on two regions in the 2nd and
3rd quadrants of the complex plane (recall that the negative real axis
is not in the domain D of the function):
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4i

i

−3i

g

i
2i

−i
√

3

Now let’s revisit the first picture from Example 1.18, the squaring
function:

2i
i

s

1 4

The next picture shows the effect of g on the output region:

1 4

g

−2i
−i

Note the interesting fact that we do not recover the original annular
region in the 2nd quadrant, but rather its rotation by π in the 4th
quadrant. So, despite the fact that g(w) is a square root of w for
every input w, it is not true that g and the squaring function s from
Example 1.18 are inverses. But we can fix this if we are more careful
about the domain of the squaring function. First note that all of the
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outputs of g lie in the right half-plane U consisting of complex numbers
with positive real part. If we restrict the squaring function to this
domain by defining f : U → C by f(z) = z2, then the functions f and
g are inverses of each other: f(g(w)) = w for all w inD and g(f(z)) = z

for all z in U . In words: the squaring function f takes the right side of
the plane and stretches it open like a fan to cover all of D, the complex
plane with the negative real axis removed. The function g undoes this
stretching, partially closing the fan to recover the half-plane.

Example 1.20. As a final example of a complex function, consider
h : C→ C defined by the formula

h(x+ iy) = ex(cos(y) + i sin(y)).

Observe the following, and refer to the picture below, which shows the
effect of h on both a horizontal and a vertical strip:

π
2
i

πi

1

h

1 e

• If we set y = 0 and consider only real inputs x, then h becomes
the ordinary real exponential function ex. In this way, the
complex function h is an extension of the real exponential
function to the complex plane.
• The function h takes the vertical line x = a to the circle of ra-
dius ea. In fact, as y increases, the function wraps the vertical
line counter-clockwise around the circle infinitely many times.
For instance, all numbers of the form a+ (2πn)i are sent by h
to the point ea on the positive real axis.
• The right half plane is sent to the exterior of the unit circle
(think of the right half plane as a collection of vertical lines,
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and use the previous observation). Likewise, the left half plane
is sent to the interior of the unit circle.
• The horizontal line y = b is sent to the ray from the origin
at an angle of b radians from the positive real axis. The ray
is traced out via an exponential parametrization, approaching
the origin as x → −∞ and traveling away from the origin as
x→ +∞.
• The horizontal strip consisting of all complex numbers x+ iy

with 0 ≤ y < 2π is spread out like a fan to cover the entire
complex plane with the exception of the origin; the left half of
the strip fills out the interior of the unit circle, while the right
half of the strip fills out the exterior. (Think of the horizontal
strip as a collection of horizontal lines, and use the previous
observation).

Remark 1.21. The previous three examples provide complex ver-
sions of the real functions displayed in Figure 1.4. In general, this will
be a major question for us: starting with a familiar real function f(x),
is it possible to find a nice complex function F (z) with the property
that F agrees with f for real inputs x? This was easy to accomplish
for the squaring function, and the complex square root function only
required some care to avoid the pitfalls discussed in Remark 1.15. But
the final example is surprising: why should we extend the familiar real
exponential function ex by using the cosine and sine functions in just
this way? In Chapter 4 we will discover a surprising answer to this
question, namely that this is the only reasonable way to extend the
real exponential to a complex function! We will also be able to find
complex versions of many other familiar functions, such as arctan(x),
the inverse of the tangent function. Before we can do any of this,
however, we need to study infinite sequences and series—these are the
topics of the next two chapters.
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Key points for Section 1.3:

• Idea of a complex function f : D → C (page 22)
• Geometry of squaring function (Example 1.18)), square
root function (Example 1.19), and complex extension of
exponential function (Example 1.20))

1.4. Optional: Polynomial Division and Unique Factorization

We first recall the process of polynomial division with remainder by
means of an example using real numbers.

Example 1.22. Consider the two polynomials

p(x) = x3 + 2x+ 1

d(x) = x+ 1.

We wish to divide p(x) by d(x), leaving a remainder. The idea is to
multiply d(x) by a monomial in order to match the highest-order term
of p(x), then subtract and repeat until we are left with a polynomial
of degree less than the degree of d(x):

x2 − x + 3

x+ 1 | x3 + 2x + 1

− (x3 + x2)

−x2 + 2x + 1

− (−x2 − x)

3x + 1

− (3x + 3)

−2

The upshot of this computation is that we have found a remainder
polynomial r(x) and a quotient polynomial q(x) such that

p(x) = d(x)q(x) + r(x).
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In this example, we have

r(x) = −2

q(x) = x2 − x+ 3.

Indeed, we explicitly check that

(x+ 1)(x2−x+ 3)−2 = (x3−x2 + 3x) + (x2−x+ 3)−2 = x3 + 2x+ 1.

Example 1.23. Here is a more substantial example involving com-
plex numbers:

p(z) = 2z5 + iz4 + z3 − 3z2 + (1− i)z + 1

d(z) = z3 − (1 + i)z2 + 1.

We proceed in the same way as above, multiplying d(z) by a monomial
in order to match the highest-order term of p(z), then subtracting and
repeating:

2z2 +(2 + 3i)z +5i

z3 − (1 + i)z2 + 1 | 2z5 +iz4 +z3 −3z2 +(1− i)z +1

−(2z5−(2 + 2i)z4 +0 +2z2)

(2 + 3i)z4 +z3 −5z2 +(1− i)z +1

− ((2 + 3i)z4+(1− 5i)z3+0 +(2 + 3i)z)

5iz3 −5z2 −(1 + 4i)z +1

− (5iz3 +(5− 5i)z2 +0 +5i)

(−10 + 5i)z2−(1 + 4i)z +(1− 5i)

In this example, the remainder and quotient are

r(z) = (−10 + 5i)z2 − (1 + 4i)z + (1− 5i)

q(z) = 2z2 + (2 + 3i)z + 5i.

Exercise 1.8. Check explicitly that p(z) = d(z)q(z) + r(z).

The procedure illustrated in these examples will work for any pair
of polynomials p(z) and d(z), yielding a quotient polynomial q(z) and
a remainder r(z) of degree strictly less than the degree of d(z). In the
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case where r(z) = 0, we have p(z) = d(z)q(z), and we say that d(z)

evenly divides p(z), and that d(z) is a factor of p(z). In the case where
d(z) has degree 1, we say that it is a linear factor of p(z).

Linear factors of a polynomial are extremely important, because
they correspond to the roots. We prove this carefully in the next propo-
sition.

Proposition 1.24. Suppose that p(z) is a complex polynomial and
c a complex number. Then division by the linear polynomial z−c yields
the constant remainder p(c):

p(z) = (z − c)q(z) + p(c)

for some polynomial q(z). In particular, p(c) = 0 (that is, c is a root
of p) if and only if z − c is a factor of p(z).

Proof. Perform division with remainder of p(z) by the linear poly-
nomial d(z) = z− c. Since the remainder must have degree strictly less
than the degree of the linear polynomial d, we see that the remainder
is actually a constant complex number r (a polynomial of degree 0).

p(z) = (z − c)q(z) + r.

Now substitute z = c. The first term on the right-hand-side becomes
zero, and we find that

p(c) = r.

It follows that the remainder r = p(c) = 0 if and only if d(z) = z− c is
a factor of p(z). �

Proof of Corollary 1.17. The corollary has two parts: an ex-
istence part stating that every polynomial factors as a product of lin-
ear polynomials, and a uniqueness part stating that the list of roots
c1, c2, . . . , cn is unique up to reordering. We will prove the existence
part by contradiction, using a technique sometimes known as a “mini-
mal criminal” argument. Indeed, if the existence statement is not true,
then there must be some polynomials p(z) that cannot be factored into
a product of linear polynomials—these are the criminals. Among all of
these criminal polynomials, let’s focus attention on one of least degree
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n ≥ 2—this is our minimal criminal, and we call it p(z). (Observe that
n ≥ 2, since if p(z) had degree 1, it would itself be a linear polynomial
az + b, and hence not a criminal).

Now apply the Fundamental Theorem of Algebra to p(z), which
yields a complex root c such that p(c) = 0. By the previous proposition,
z − c is a linear factor of p(z), and it evenly divides p(z):

p(z) = (z − c)q(z).

Note that the degree of q(z) is one less than the degree of p(z), and
hence q(z) cannot be a criminal, which means that

q(z) = a(z − c1)(z − c2) . . . (z − cn−1)

for some complex numbers a and ci. But then substituting into our
expression for p(z) reveals that p(z) isn’t a criminal after all:

p(z) = a(z − c1)(z − c2) · · · (z − cn−1)(z − c).

This contradiction shows that there are, in fact, no criminals, so every
polynomial can be factored as a product of linear factors.

For the uniqueness part, suppose that we have a single polynomial
p(z) that can be factored in two possibly different ways:

p(z) = a(z − c1)(z − c2) · · · (z − cn)

p(z) = b(z − d1)(z − d2) · · · (z − dm).

Here, c1, c2, . . . , cn is a list of complex roots of p(z), possibly with rep-
etitions, and similarly for d1, d2, . . . , dm. First, some easy observations:
the total degree of the polynomial p(z) is the number of linear factors
on the right hand side, so it follows that n = m, and the two lists
of roots ci and di must have the same length. Second, if we were to
expand the first expression, the number a would emerge as the coef-
ficient of the leading term zn. For the same reason, b must be the
coefficent of the leading term, so a = b. Finally, each number in the
list ci must appear at least once in the list di and vice-versa. Indeed,
the first expression for p(z) makes it clear that the ci are the only roots
of p(z), since plugging in any other number for z would yield a product
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of nonzero complex numbers, which can’t be zero. Similarly, the di are
the only roots of p(z).

All that remains is to show that the two lists of roots ci and di have
the same repetitions. Since we don’t care about the ordering of these
lists, we need to show that if c1 appears exactly k times in the first
list, then it also appears exactly k times in the second list. So suppose
that c1 appears k times in the first list of roots, and ` ≥ k times in the
second list. Our two expressions for p(z) become

p(z) = a(z − c1)k(z − ck+1) · · · (z − cn)

p(z) = a(z − c1)`(z − d`+1) · · · (z − dn)

where the roots ck+1, . . . , cn and d`+1, . . . , dn are distinct from c1. It
follows that a(z−c1)k is a factor of p(z), and the first expression allows
us to write the quotient as q(z) = (z− ck+1) · · · (z− cn). In particular,
q(c1) 6= 0. But the second expression allows us to write the same
quotient as

q(z) = (z − c1)`−k(z − d`+1) · · · (z − dn).

Note that, if ` > k, then (z − c1) would be a linear factor of q(z), and
q(c1) = 0. Hence, we see that ` = k as required. �

Key points for Section 1.4:

• Polynomial division with remainder (Examples 1.22
and 1.23)
• Relationship between roots and linear factors (Proposi-
tion 1.24)
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1.5. In-text Exercises

This section collects the in-text exercises that you should have worked
on while reading the chapter.

Exercise 1.1 When does equality occur in the statement of the tri-
angle inequality?

Exercise 1.2 Recall the algebraic formula for the product of two com-
plex numbers a+ bi and c+ di:

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

(a) Express two generic complex numbers z and w in polar form, and
then use the formula above to compute the product zw.

(b) Check that the arg(zw) = arg(z) + arg(w). You will need to make
use of the trigonometric identities

cos(θ + φ) = cos(θ) cos(φ)− sin(θ) sin(φ)

sin(θ + φ) = cos(θ) sin(φ) + sin(θ) cos(φ).

(c) Finally, check that |zw| = |z||w|.

Exercise 1.3 Can you convince yourself that every nonzero complex
number z has exactly one inverse, i.e. that inverses are unique?

Exercise 1.4 Show that zz = |z|2, so that z−1 = z/|z|2.

Exercise 1.5 In this exercise, you will show that every nonzero com-
plex number has two distinct square roots, and in fact n distinct nth
roots for every n ≥ 1.

(a) (Warm-up) Find two distinct complex numbers w1 6= w2, such that
w2

1 = w2
2 = 1 + i. Hint: use polar coordinates.

(b) Consider the complex number c with polar coordinates (r, θ), where
r > 0 and −π < θ ≤ π. Define the following two complex numbers,
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expressed using polar coordinates:

w1 :

(√
r,
θ

2

)
w2 :

(√
r,
θ

2
+ π

)
.

Show that w2 = −w1 and that w2
1 = w2

2 = c. Draw a nice picture
in the case where c = i.

(c) Now fix an integer n > 2 and show that every nonzero complex
number c has exactly n distinct nth roots. Draw a nice picture
of the 6 distinct 6th roots of 1. Hint: use polar coordinates as in
part (b).

Exercise 1.6 Expand the following product and verify that that you
get the polynomial p(z) on page 18.

(z − 1)(z − 5− 2i)(z − 5− 5i).

Exercise 1.7 In the picture above, let u + iv = s(x + iy) denote the
squaring function, so that the real variables x, y describe the coordinate
axes on the left hand side (inputs), while the real variables u, v describe
the coordinate axes on the right hand side (outputs). Verify that the
squaring function sends the vertical line x = 1 to the sideways parabola
defined by u = 1− 1

4
v2.

Exercise 1.8 Check explicitly that p(z) = d(z)q(z) + r(z) for the
polynomials in Example 1.23.



34 1. NUMBERS

1.6. Problems

1.1. For each of the following pairs of complex numbers z and w,
compute the numbers z + w, z − w, zw, w−1, and z/w. Express all of
your answers in cartesian form a+ bi.

(a) z = 1 + i, w =
√

3− i
(b) z = −2− 3i, w = 1

3
i

(c) z = 3, w = −1 + 2i

(d) z = −4− 3i, w = −4 + 3i

1.2. Consider the following pairs of complex numbers:

(a) z = 1 + i, w =
√

3− i
(b) z =

√
2 +
√

2i, w = 3i

(c) z = −3, w = −2
√

3 + 2i

(d) z = −2i, w = 1
3

+
√
3
3
i

For each of the pairs z, w of complex numbers listed above, complete
the following:

(i) Plot z and w on the complex plane, and then use the parallelogram
law to find the location of z + w and z − w.

(ii) Find the polar forms of z and w.
(iii) Use geometric reasoning to find the location of w−1.
(iv) Use the rotation-scale interpretation of multiplication to find the

location of zw and z/w

1.3. Let z and w be complex numbers. Show that the following
properties are true:

(a) z + w = z + w

(b) zw = z · w
(c) |z|2 = zz (this is Exercise 1.4)
(d) |z| = |z|

1.4. Let z = a + bi be a complex number. Show that the following
properties are true:

(a) Re(z) =
z + z

2
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(b) Im(z) =
z − z

2i
(c) Re(iz) = − Im(z)

(d) Im(iz) = Re(z)

1.5. Sketch images of the following, shading the described regions.

(a) |z| < 4

(b) |z − i| < 2

(c) 1 < |z − i+ 2| < 2

(d)
∣∣Re(z)

∣∣ < |z|
(e) 0 < Im(z) < π

(f) −1 < Re(z) ≤ 1

(g) |z − 1| < |z|

1.6. Is it true that Re(zw) = Re(z) Re(w) for all complex numbers z
and w? If so, show that it is always true. If not, give an example of
complex numbers z and w such that Re(zw) 6= Re(z) Re(w).

1.7. This problem provides an algebraic proof of the triangle inequality,
Proposition 1.7. Let z and w be complex numbers.

(a) Show that |z + w|2 = |z|2 + zw + wz +|w|2.
(b) Justify the following chain of equalities and inequalities:

zw + wz = zw + (zw) = 2 Re(zw) ≤ 2|z||w| .

(c) Combine parts (a) and (b) to show that|z + w|2 ≤ (|z|+|w|)2. Then
take the square root of both sides to obtain the triangle inequality.

1.8. Suppose that z 6= −1 is a complex number of unit magnitude:
|z| = 1. Show that w = 1+z

|1+z| is a square root of z. (Hint: compute w2

and use Exercise 1.4).

1.9. For each of the following complex numbers z, find both square
roots. Express your answers in cartesian form a+ bi.

(a) z = 2i

(b) z = −3i

(c) z = 1 + i
√

3
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1.10. Use the quadratic formula to factor the following polynomial
into linear factors. Express both roots in cartesian form a+ bi.

p(z) = 2z2 − (1 + i)z − 2i.

1.11. Check that z = 1 is a root of the following cubic polynomial

p(z) = z3 − iz2 − z + i.

Use polynomial division to factor p(z) as the product of a linear poly-
nomial and a quadratic. Then use the quadratic formula to finish the
factorization of p(z) into linear factors.

1.12. Let s : C→ C be the squaring function s(z) = z2. Compute the
following and write your answers in cartesian form a+ bi:

(a) s(3− i)
(b) s(−

√
2− 2i)

(c) s(1
2

+ 1
2
i)

(d) s(z), where z has polar coordinates (4, π
4
)

(e) s(w), where w has polar coordinates (1
3
, 5π

3
)

1.13. Draw nice pictures and write a sentence or two explaining the
effect of the squaring function s(z) = z2 on the following regions in the
complex plane:

(a) the unit square in the 1st quadrant, with corners 0, 1, 1 + i, and i
(b) the unit square in the 3rd quadrant, with corners 0,−1,−1− i,

and −i
(c) the left half plane, defined by Re(z) < 0

(d) the exterior of the circle of radius 1/2
(e) the vertical line x = a

(f) the horizontal line y = b

(g) the line x = y

1.14. Let t : C → C be the cubing function t(z) = z3. Compute the
following and write your answers in cartesian form a+ bi:

(a) t(3− i)
(b) t(−

√
2− 2i)
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(c) t(1
2

+ 1
2
i)

(d) t(z), where z has polar coordinates (4, π
4
)

(e) t(w), where w has polar coordinates (1
3
, 5π

3
)

1.15. Draw nice pictures and write a sentence or two explaining the
effect of the cubing function t(z) = z3 on the following regions in the
complex plane:

(a) the 1st quadrant of the unit disc, defined by |z| < 1, Re(z) > 0,
and Im(z) > 0

(b) the 2nd quadrant of the complex plane, defined by Re(z) < 0 and
Im(z) > 0

(c) the interior of the circle of radius 2

1.16. Let g : D → C be the function from Example 1.19. Compute
the following and write your answers in polar form r(cos(θ) + i sin(θ)).

(a) g(−4 + 4i)

(b) g(
√

3− i)
(c) g(z), where z has polar coordinates (12,−π

6
)

(d) g(w), where w has polar coordinates (1
9
, 3π

4
)

1.17. Draw nice pictures and write a sentence or two explaining the
effect of the function g from Example 1.19 on the following regions in
the complex plane:

(a) the upper half plane, defined by Im(z) > 0

(b) the exterior of the circle of radius 2 in the 4th quadrant, defined
by |z| > 2, Re(z) > 0, and Im(z) < 0

1.18. Let h : C → C be the function from Example 1.20. Compute
the following:

(a) h(0)

(b) h(1 + πi)

(c) h(−1
3

+ 1
3
i)

1.19. Draw nice pictures and write a sentence or two explaining the
effect of the function h from Example 1.20 on the following lines in the
complex plane:
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(a) the real axis
(b) the imaginary axis
(c) the line x = y

(d) the line x = 2y

(e) the line x = −y

1.20. Using the function h : C→ C defined in Example 1.20,

h(x+ iy) = ex(cos(y) + i sin(y)),

show that h(x+ iy) = h
(
x+ iy

)
.



CHAPTER 2

SEQUENCES

2.1. Exploration: Complex Dynamics

This section is our second advertisement for the complex numbers,
and it has a different flavor than our first advertisement (The Funda-
mental Theorem of Algebra, Theorem 1.16). We begin by describing
a simple procedure: select a complex number c, and consider the qua-
dratic polynomial p(z) = z2 + c. Construct a list (z0, z1, z2, . . . ) of
complex numbers as follows:

z0 = 0

z1 = p(z0) = p(0) = c

z2 = p(z1) = p(c) = c2 + c

z3 = p(z2) = p(c2 + c) = (c2 + c)2 + c

...

zn = p(zn−1) = z2n−1 + c

...

Each term in this list is produced by squaring the previous term
and then adding c; we refer to this process as iterating the polynomial

39
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Figure 2.1. The first 60 terms of the list obtained by
iterating the polynomial z2 + 0.6i starting with z0 = 0.
The colorbar on the right identifies the various terms in
the list: the initial terms are red, and the later terms are
blue.

p(z) = z2 + c starting with z0 = 0. Figure 2.1 shows the first 60 terms
of the list corresponding to c = 0.6i.

Exercise 2.1. The term z0 = 0 is represented by the red dot at the
origin in Figure 2.1, and the next term z1 = c = 0.6i is represented by a
red dot on the imaginary axis. Thinking purely geometrically (using the
rotation-scale interpretation of multiplication and the parallelogram
law for addition), find the red dot representing the term z2 = c2 + c.
Can you identify the red dot representing z3? What about z4? How
far can you go?

A different choice for c would produce a different list of complex
numbers, and hence a different picture. In class you will work in groups
to investigate these lists as you change c and also as you include more
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terms. The goal is to identify various behaviors and to discover how
those behaviors depend on the choice of c. You will be rewarded with
some surprising and beautiful pictures.

2.2. Examples of Sequences

We are now done with the advertisements, and we assume you are
enthused about complex numbers. In this section, we begin our study
of sequences.

Definition 2.1. A sequence is a list of complex numbers in a def-
inite order

(z1, z2, z3, . . . ),

where the dots “ . . . ” indicate that the list goes on forever. We also
often use the more concise notations (zn)n≥1 or simply (zn) to denote a
sequence, where the symbol zn represents the nth term of the sequence.
If all of the numbers in the sequence are actually real numbers, then
we say that the sequence is real, and similarly for positive sequences,
nonnegative sequences, rational sequences, integer sequences, etc.

Remark 2.2. Note that in Section 2.1, we started the sequences
with the index 0 instead of 1, writing (z0, z1, z2, . . . ). Using the concise
notation, we would write these sequences as (zn)n≥0. The choice of
starting point for the index of a sequence is a purely notational matter;
it is sometimes more convenient to start at 0 and sometimes more
convenient to start at 1 or some other integer. However, once you have
chosen notation for a particular sequence, you must stick with it to
avoid confusion.

Example 2.3. We list several examples of sequences and point out
some common misunderstandings:

(a) The counting numbers (1, 2, 3, . . . ) form an important sequence of
integers. In concise form, we would express this sequence as (n)n≥1.

(b) The reciprocals of the counting numbers (1, 1/2, 1/3, . . . ) forms an-
other important sequence, this time of rational numbers. This se-
quence (1/n) has a special name: the harmonic sequence.
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(c) If we alternate the signs in the harmonic sequence, then we obtain
the alternating harmonic sequence:(

(−1)n+1

n

)
=

(
1, −1

2
,

1

3
, −1

4
,

1

5
, −1

6
, . . .

)
.

(d) The list (i, i, i, . . . ) = (i)n≥1, in which every term is equal to the
same number i, forms a sequence; such sequences are called con-
stant. In particular, sequences may have repetitions.

(e) The list (1, 2, 3, 1, 2, 3, . . . ) is a sequence, as is (3, 2, 1, 3, 2, 1, . . . ).
Despite the fact that each of these sequences contains the same
numbers 1, 2, 3 repeated over and over again, they are not the same
sequence: the order of the numbers in a sequence matters.

(f) The prime numbers (2, 3, 5, 7, 11, 13, 17, 19, 23, . . . ) form a fascinat-
ing sequence of integers. Euclid’s Elements (c. 300 BCE) contains
a proof that there are infinitely many prime numbers, so this truly
is an infinite sequence. As of this writing (January, 2019), the
largest explicitly known prime number is 282,589,933 − 1, which has
over 24 million base ten digits. This example shows that there are
important sequences for which we do not explicitly know all of the
terms.

(g) The base ten digits of π provide another interesting example of a
sequence for which we do not know all of the terms. This sequence
begins as (3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, . . . ) and goes on forever. While
this sequence is completely fixed and unambiguous, it seems as if it
is generated by a random process. Over 22 trillion digits of π have
been computed explicitly as of this writing.

(h) In class, you generated the beginnings of many sequences as de-
scribed in Section 2.1. For each choice of complex number c, you
looked at the sequence

(0, c, c2 + c, (c2 + c)2 + c, . . . ).

These are examples of iterative sequences, as they are produced by
iterating a function (in this case the polynomial z2 + c).
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Exercise 2.2. This exercise asks you to consider some sequences
that lie on the unit circle.

(a) Fix a positive integer m ≥ 1, and consider the complex number
a = cos(2π/m) + i sin(2π/m). Describe the sequence consisting of
the nonnegative integer powers of a:

(an) = (1, a, a2, a3, . . . ).

Draw a nice picture of this sequence for m = 6.
(b) Now fix an irrational real number s in the interval (0, 1), and de-

fine the complex number b = cos(2πs) + i sin(2πs). Describe the
sequence (bn) = (1, b, b2, b3, . . . ). What would you say is the key
difference between this sequence and the sequence (an)?

We now introduce several standard examples of sequences that will
appear repeatedly during the course. Our first example generalizes the
types of sequences you dealt with in the previous exercise.

Example 2.4 (Geometric Sequences). Fix two nonzero complex
numbers a and c. The geometric sequence with initial term a and
common ratio c is

(acn)n≥0 = (a, ac, ac2, ac3, . . . )

Note that we start the indexing with n = 0. The nonzero number c is
called the common ratio, because it is the ratio between each pair of
consecutive terms:

acn+1

acn
= c.

For a concrete example, take a = 2 and c = 3i. Then the corresponding
geometric sequence is

(2 · (3i)n) = (2, 6i, −18, −54i, 162, . . . ).

Remark 2.5. In the previous example, we gave an explicit formula
for the nth term of a geometric sequence: zn = acn. But here is an
alternative way to describe the same geometric sequence:

z0 = a and zn = c · zn−1 for n ≥ 1.
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This is an example of a recursive definition: we explicitly specify one
or more initial terms of the sequence (in this case z0 = a), and then we
define all later terms zn via a recursive formula involving earlier terms.
Most sequences arise recursively, rather than from an explicit formula
for the general term. We present several important examples below.

Example 2.6 (Factorial Sequence). Consider the following recur-
sively defined sequence (zn):

z0 = 1 and zn = n · zn−1 for n ≥ 1.

Here is the beginning of the sequence:

(1, 1, 2, 6, 24, 120, . . . ).

You may recognize these numbers as the factorials of the nonnegative
integers:

zn = n! = n · (n− 1) · (n− 2) · · · · · 2 · 1.
Note that we are using the convention that 0! = 1.

Example 2.7 (Inverse Factorial Sequence). The inverse factorial
sequence is given by the reciprocals of the terms of the factorial se-
quence: (

1

n!

)
=

(
1, 1,

1

2
,

1

6
,

1

24
,

1

120
, . . .

)
.

Exercise 2.3. Let (wn) denote the inverse factorial sequence from
Example 2.7. Give a recursive definition for the sequence (wn).

Example 2.8 (Binomial Sequences). This example introduces an
important collection of numbers called binomial coefficients that arise
in a wide variety of mathematical and scientific contexts. We begin
by computing powers of the linear polynomial 1 + z, focusing on the
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coefficients that appear in the expanded forms:

(1 + z)0 = 1

(1 + z)1 = 1 + 1z

(1 + z)2 = 1 + 2z + 1z2

(1 + z)3 = 1 + 3z + 3z2 + 1z3

...

In general, when we expand (1 + z)n, we will obtain a list of n + 1

nonzero coefficients that we denote
(
n
k

)
(pronounced “n choose k”):

(1 + z)n =

(
n

0

)
+

(
n

1

)
z +

(
n

2

)
z2 + · · ·+

(
n

n− 1

)
zn−1 +

(
n

n

)
zn.

To be clear: the symbol
(
n
k

)
denotes the coefficient of zk in the expan-

sion of (1 + z)n. Note that
(
n
k

)
= 0 for k > n, because zn is the highest

degree term that appears in the expansion of (1 + z)n. Thus, for each
integer n ≥ 0, we have a sequence consisting of n + 1 nonzero terms
followed by infinitely many zeros. For instance, here is the sequence of
binomial coefficients

(
4
k

)
, obtained from the coefficients of (1 + z)4:

(1, 4, 6, 4, 1, 0, 0, 0, . . . ).

Later in the course (Example 4.60) we will generalize these binomial
sequences from the polynomials (1 + z)n to the more general functions
(1 + z)p where p is any real number.

Remark 2.9. We have chosen to introduce the binomial coefficients
via the polynomials (1 + z)n, because this course is focused on func-
tions. In a discrete mathematics or combinatorics course, these num-
bers would instead be introduced as the answer to a certain counting
problem which explains the phrase “n choose k.” The connection with
polynomials described above would then become a result called the bi-
nomial theorem. Problem 2.18 leads you through this combinatorial
interpretation of the binomial coefficients.

You may recognize the binomial coefficients
(
n
k

)
from Example 2.8

as the entries of Pascal’s triangle (see Figure 2.2). You might even
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n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1

Figure 2.2. The first 7 rows of Pascal’s triangle. The
kth entry in the nth row is the binomial coefficient

(
n
k

)
,

obtained by adding the (k − 1)st and kth entries of
row n− 1.

recall how to generate this triangle: each row begins and ends with a
1, and the interior terms in a row are obtained by adding the two terms
just above in the previous row. For instance, in Figure 2.2, the red 15
in the row n = 6 is the sum of the red 5 and 10 just above in the row
n = 5.

This rule for generating Pascal’s triangle amounts to saying that
the binomial coefficients

(
n
k

)
have a recursive definition: terms in the

nth sequence are determined by terms in the (n − 1)st sequence. For
instance, the relationship 15 = 5 + 10 indicated by the red numbers in
Figure 2.2 corresponds to the following equality of binomial coefficients:(

6

2

)
=

(
5

1

)
+

(
5

2

)
.

We make all this precise in the next proposition.

Proposition 2.10. Let n ≥ 0 be a positive integer. The binomial
coefficients

(
n
k

)
may be described as follows:

(a) if k = 0 or k = n, then
(
n
k

)
= 1;

(b) if k > n, then
(
n
k

)
= 0;

(c) if 0 < k < n, then(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Proof. Part (a) follows directly from the expansion of the poly-
nomial (1 + z)n: the constant term

(
n
0

)
and the coefficient

(
n
n

)
of zn
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are both 1. Similarly, part (b) follows from the fact that (1 + z)n is a
polynomial of degree n, so all higher degree coefficients

(
n
k

)
for k > n

are zero.
For part (c), we need to relate the coefficients of (1 + z)n to the

coefficients of (1 + z)n−1. We do this by first factoring (1 + z)n as the
product (1 + z)n−1(1 + z), then expanding (1 + z)n−1 using binomial
coefficients, and finally multiplying by (1 + z).

(1 + z)n = (1 + z)n−1(1 + z)

=

((
n− 1

0

)
+

(
n− 1

1

)
z + · · ·+

(
n− 1

n− 1

)
zn−1

)
(1 + z)

=

(
n− 1

0

)
+

(
n− 1

1

)
z +

(
n− 1

2

)
z2 + · · ·+

(
n− 1

n− 1

)
zn−1

+

(
n− 1

0

)
z +

(
n− 1

1

)
z2 + · · ·+

(
n− 1

n− 1

)
zn.

Now we carefully combine the coefficients of like terms, and we notice
a pattern:

(1 + z)n =

(
n− 1

0

)
+

((
n− 1

0

)
+

(
n− 1

1

))
z

+

((
n− 1

1

)
+

(
n− 1

2

))
z2 + · · ·

+

((
n− 1

k − 1

)
+

(
n− 1

k

))
zk + · · ·

+

((
n− 1

n− 2

)
+

(
n− 1

n− 1

))
zn−1 +

(
n− 1

n− 1

)
zn.

For 0 < k < n, the coefficient of zk in this expression is the sum(
n−1
k−1

)
+
(
n−1
k

)
. But this is the expansion of (1 + z)n, so the coefficient

of zk must also be
(
n
k

)
, which proves the claim:(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

�
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Remark 2.11. Later in this chapter (page 84 of Section 2.6), we will
talk about the principle of mathematical induction. Using induction
and the recursion from the previous proposition, we will be able to
establish an explicit formula for the binomial coefficients in terms of
factorials: (

n

k

)
=

n!

k!(n− k)!
.

See Proposition 2.45 for the details of the proof.

Key points for Section 2.2:

• Sequences (Definition 2.1)
• Geometric sequences (Example 2.4)
• Recursive sequences (Remark 2.5) and factorials (Exam-
ple 2.6)
• Binomial sequences (Example 2.8) and Pascal’s triangle
recursion (Proposition 2.10).

2.3. Boundedness

During the in-class groupwork associated with Section 2.1, you no-
ticed that sequences can either be bounded or unbounded, and this
distinction led to a strange and beautiful picture. We now define these
notions carefully.

Definition 2.12. A sequence (z1, z2, z3, . . . ) is bounded if there is
a fixed real number B > 0 such that all terms in the sequence have
magnitude less than or equal to B: for all indices n, we have |zn| ≤ B.
The numberB is called a bound for the sequence. Visually, B is a bound
for the sequence if all of the numbers zn are contained in the disc of
radius B centered at the origin of the complex plane (see Figure 2.3).
A sequence is unbounded if it is not bounded.

This formal definition captures the intuitive notion that for some
sequences we can draw a large circle that contains the entire sequence
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z1
z2

B

z3

zn . . .

Figure 2.3. A bounded sequence is entirely contained
within a disc of some finite radius B.

(these are the bounded sequences), whereas other sequences cannot be
“fenced in” in this way.

Exercise 2.4. Which of the sequences in Example 2.3 are bounded,
and which are unbounded?

(a) the counting numbers (n)

(b) the harmonic sequence (1/n)

(c) the alternating harmonic sequence ((−1)n+1/n)

(d) the constant sequence (i)n≥1

(e) the sequence (1, 2, 3, 1, 2, 3, . . . )

(f) the sequence of prime numbers (2, 3, 5, 7, 11, . . . )

(g) The digits of π in base ten (3, 1, 4, 1, 5, 9, . . . )

(h) The iterative sequences (0, c, c2 + c, (c2 + c)2 + c, . . . )

In the previous exercise, you probably answered that the sequence
of counting numbers (1, 2, 3, . . . ) is unbounded. This is correct, and is
a fact of such fundamental importance that we record it as a named
property:
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Archimedean Property of R: The counting numbers (1, 2, 3, . . . )

form an unbounded sequence of real numbers. Explicitly, no choice of
real number B > 0 provides a bound. That is, for every choice of real
number B > 0, there exists a positive integer n > 0 such that n > B.

To give a concrete instance of the final sentence above: suppose that
I were to propose B = 1000π as a bound for the counting numbers. You
could immediately show that I am mistaken by exhibiting the integer
n = 4000, which is bigger than my proposed bound of 1000π. Visually
(see Figure 2.3), no finite disc contains all of the counting numbers.

Remark 2.13. While the Archimedean Property may seem com-
pletely obvious, there are in fact important number systems that do
not have this property. If you are interested in learning more, perform
a web search for p-adic numbers.

Exercise 2.5. Consider the recursively defined sequence (hn):

h1 = 1 and hn = hn−1 +
1

n
for n ≥ 2.

(a) Compute the first 5 terms of the sequence (h1, h2, h3, h4, h5, . . . ) by
hand.

(b) Use a web browser to navigate to SageMathCell, located at
https://sagecell.sagemath.org

Copy and paste the Python code provided below into the window,
being careful to fix any indentation problems that may arise.

N = 100
tail_size = 10
h = 1.0
for n in range(2, N + 1 - tail_size):

h = h + 1/n
for n in range(N + 1 - tail_size, N + 1):

h = h + 1/n
print("h_{:d} = ".format(n) + str(h))

Now click Evaluate. This code computes the first N = 100 terms of
the sequence (hn) and prints out the last tail_size = 10 computed

https://sagecell.sagemath.org
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terms to the screen. By changing the values of N and tail_size,
you can investigate the behavior of the sequence. Based on your
investigations, do you think the sequence (hn) is bounded?

To conclude this section, we return to the context of Section 2.1,
where we formed sequences by iterating the values of a complex poly-
nomial z2 + c, starting with the value z0 = 0.

c = 1 : This choice for c yields the sequence (0, 1, 2, 5, 26, 677, . . . ).
Each term in this sequence is one more than the square of
the previous term, so the terms eventually get larger than any
fixed real number B. Hence this sequence is unbounded.

c = 0 : Now we get the constant sequence (0, 0, 0, 0, . . . ). In particu-
lar, this sequence is bounded. In fact, any real number B > 0

serves as a bound.
c = −1 : This yields the sequence (0,−1, 0,−1, 0, . . . ) which is bounded,

with any number B ≥ 1 serving as a bound.
c = 0.5i : This choice for c produces the sequence displayed in Figure 2.4.

The picture certainly indicates that the sequence is bounded.
But something even more interesting is going on. Here are the
numerical values of the beginning of the sequence, where we
have kept two decimal places of precision:

z0 = 0

z1 = 0.50i

z2 = −0.25 + 0.50i

z3 ≈ −0.19 + 0.25i
...

z14 ≈ −0.12 + 0.40i

z15 ≈ −0.14 + 0.41i
...

z27 ≈ −0.13 + 0.39i

z28 ≈ −0.14 + 0.39i

z29 ≈ −0.14 + 0.39i

z30 ≈ −0.14 + 0.39i
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Figure 2.4. The first 60 terms of the sequence obtained
by iterating the polynomial z2+0.5i starting with z0 = 0.
The colorbar on the right identifies the various terms in
the sequence: the initial terms are red, and the later
terms are blue.

The sequence appears to settle down to the value −0.14 + 0.39i. But
if we keep track of more decimal places, we see that this isn’t quite
correct. Here are terms 30–49 with 4 decimal places of precision:

z30 ≈ −0.1353 + 0.3924i

z31 ≈ −0.1357 + 0.3938i

z32 ≈ −0.1367 + 0.3931i
...

z37 ≈ −0.1357 + 0.3931i

z38 ≈ −0.1361 + 0.3933i

z39 ≈ −0.1361 + 0.3930i

z40 ≈ −0.1359 + 0.3930i

z41 ≈ −0.1360 + 0.3932i

z42 ≈ −0.1361 + 0.3931i
...

z47 ≈ −0.1360 + 0.3931i

z48 ≈ −0.1360 + 0.3931i

z49 ≈ −0.1360 + 0.3931i
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Now it seems that the sequence has settled on −0.1360 + 0.3931i. But
again, if we look more precisely, we see that the sequence is actually
still changing:

z44 ≈ −0.135959 + 0.393127i

z45 ≈ −0.136064 + 0.393102i

z46 ≈ −0.136016 + 0.393026i

z47 ≈ −0.135969 + 0.393085i

z48 ≈ −0.136028 + 0.393105i

z49 ≈ −0.136028 + 0.393053i

z50 ≈ −0.135987 + 0.393067i

z51 ≈ −0.136009 + 0.393096i

z52 ≈ −0.136026 + 0.393071i

z53 ≈ −0.136002 + 0.393065i

z54 ≈ −0.136003 + 0.393085i

z55 ≈ −0.136019 + 0.393078i

z56 ≈ −0.136009 + 0.393068i

z57 ≈ −0.136004 + 0.393078i

z58 ≈ −0.136014 + 0.393080i

z59 ≈ −0.136012 + 0.393072i

While the terms of this sequence are continuing to change, the
changes are getting smaller and smaller, and the terms seem to be ap-
proaching some particular value that they never quite reach. This is
the phenomenon of convergence, which is the topic of the next section.

Key points for Section 2.3:

• Bounded sequences (Definition 2.12)
• Archimedean property of R (page 50)

2.4. Convergence

Consider the harmonic sequence (1/n) = (1, 1/2, 1/3, . . . ). Intu-
itively, these numbers are getting closer and closer to zero, but they
never quite arrive: each term is smaller than the previous one, but they
are all nonzero. On the other hand, it seems that they get arbitrarily
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close to zero. We want to express this behavior by saying that the se-
quence converges to 0. In order to fully develop this concept, we need
to move beyond verbal description and make a formal definition.

As a first step toward a definition, let’s focus on the idea of “getting
arbitrarily close to zero.” The first column below displays positive real
numbers d > 0, each of which we interpret as a “desired closeness to
zero.” The second column contains corresponding indices N beyond
which all terms of the sequence achieve the desired closeness d: for
n ≥ N , we have 0 < 1/n < d.

The terms of (1/n) get arbitrarily close to zero

d = desired closeness N = index to achieve d

1 2
0.5 3
0.01 101
0.0034 295
...

...

Let’s check the entries of the table:

• The first line says that if we consider indices n ≥ N = 2, then
we should obtain terms smaller than d = 1. And indeed this
is true: if n ≥ 2, then 1/n ≤ 1/2 < 1.
• The second line says that if we consider indices n ≥ 3, then we
should obtain terms smaller than 0.5. And this is also true: if
n ≥ 3, then 1/n ≤ 1/3 < 0.5.
• If we consider indices n ≥ 101, then we obtain terms smaller
than 0.01: if n ≥ 101, then 1/n ≤ 1/101 < 0.01.
• If n ≥ 295, then 1/n ≤ 1/295 ≈ 0.0033898 < 0.0034, so the
fourth line holds as well.

Here is the takeaway from this discussion: no matter what positive
number d > 0 shows up in the first column, it will be possible to find a
valid index N to put in the second column. Indeed, we simply choose
any integer N > 1/d. Any such N is a valid choice, because if we
consider indices n ≥ N , then 1/n ≤ 1/N < d as required. (Note that
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the Archimedean property from page 50 guarantees that there is an
integer greater than 1/d.)

We are starting to nail down what we mean by “getting arbitrarily
close to zero”: no matter what positive number d > 0 shows up in the
first column above, we can always find a corresponding index N for the
second column. To emphasize the fact that the positive number d > 0

in the first column can be arbitrary, we imagine playing a game. In
this game, there are two players (you and me), and we have different
roles: my role is to convince you that the terms of the sequence (1/n)

are getting arbitrarily close to zero; your role is to be skeptical.

The Convergence Game (for the harmonic sequence):

(1) You go first, and you challenge me with a small distance d > 0;
you can choose the positive real number d to be as small as
you like, but you have to make a decision and tell me what
number you are thinking of.

(2) Now it is my turn. Knowing your choice of distance d, I in-
vestigate the terms of the harmonic sequence (1/n) and try
to find an index N such that all the terms with index N or
greater are closer to zero than your distance d. If there is such
an index N , then I announce it; if no such N exists, then I
lose the game.

(3) Now it is your turn again, and you verify my choice by trying
to demonstrate that 1/n < d whenever n ≥ N . If you can find
a counterexample to this assertion, then you have shown that
my N is not valid and I lose; if your demonstration succeeds,
then my N is valid, and I win this round of the game.

(4) Now we return to step (1) and play another round.

To say that the harmonic sequence (1/n) converges to 0 is to say that
I will win every round of this game: no matter how small of a distance
d you choose, I can specify an index value N > 1/d such that beyond
the Nth term of the sequence, all the terms are smaller than d. This is
just a rephrasing of the earlier statement that no matter what d shows
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up in the first column of the table, I can find a valid index N for the
second column.

With the convergence game in mind, we now present the formal
definition of convergence:

Definition 2.14. A sequence (zn) converges to a complex number
w if for all real numbers d > 0, there exists an index N such that
|zn − w| < d for all indices n ≥ N . In this case, we say that w is the
limit of the sequence and write limn→∞ zn = w. If no such w exists for
the sequence (zn), then we say that the sequence does not converge or
diverges.

This definition has several parts, so we will spend some time un-
packing it. Throughout the discussion, keep in mind that it precisely
captures the behavior of recent examples, where the terms of a sequence
(z1, z2, z3, . . . ) are getting arbitrarily close to some number w, but may
never actually reach that number. The definition itself is a generaliza-
tion and distillation of the convergence game described earlier for the
harmonic sequence.

• The complex number w is playing the role of zero in the har-
monic example: instead of trying to show that the reciprocals
1/n are getting arbitrarily close to zero, we are now trying
to show that the terms of the given sequence (zn) are getting
arbitrarily close to w. Note that the distance from zn to w is
given by the magnitude |zn − w|.
• The positive real number d is playing the role of the distance
you choose in the game; the phrase “for all real numbers d > 0”
captures the notion that we continue to play rounds of the
game indefinitely: in order to assert convergence, I must be
able to win every round of the game, no matter what choice
you make for the distance d.
• The phrase “there exists an index N such that |zn − w| <
d for all indices n ≥ N ” represents steps (2) and (3) of the
game (my turn and your verification), where I respond with a
particular index value N , based on your choice of distance d.
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Now, instead of verifying that the reciprocals 1/n for n ≥ N

are smaller than d, you must verify that all terms zn for n ≥ N

are closer to w than the distance d.

We now state the convergence game for a general sequence (zn).
Definition 2.14 says that if I can win every round of this game, then
the sequence (zn) converges to w:

The Convergence Game (for limn→∞ zn = w):

(1) You go first, and you challenge me with a small distance d > 0.
(2) Knowing your choice of distance d, I investigate the terms of

the sequence (zn) and try to find an index N such that all
the terms with index N or greater are closer to w than your
distance d. If there is such an index N , then I announce it; if
no such N exists, then I lose the game.

(3) You now verify my choice by trying to demonstrate that the
magnitude |zn − w| < d whenever n ≥ N . If you can find a
counterexample to this assertion, then you have shown that
my N is not valid and I lose; if your demonstration succeeds,
then my N is valid, and I win this round of the game.

(4) Now we return to step (1) and play another round.

Example 2.15. As an example of playing the convergence game,
let’s show that the sequence (zn) =

(
n−1
n+1

)
converges to w = 1. You

begin by challenging me with a positive real number d > 0. I must
now find an index N such that n ≥ N implies that |n−1

n+1
−1| < d. Let’s

do some preliminary scratch work (this is often the best way to get
started). Everything between the two horizontal lines below is scratch
work, helping me to discover my choice of N .

Scratch work: Quantity I want to be smaller than d:∣∣∣∣n− 1

n+ 1
− 1

∣∣∣∣ =

∣∣∣∣n− 1− (n+ 1)

n+ 1

∣∣∣∣ =

∣∣∣∣ −2

n+ 1

∣∣∣∣ =
2

n+ 1
.

But 2/(n + 1) < d exactly when n + 1 > 2/d. I now have an idea for
how to choose N , and I can exit the scratchwork.
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I am ready to take my turn now, and I choose an integer N > 2/d.
Now you verify that my choice of N is valid: suppose that n ≥ N .
Then n + 1 ≥ N + 1 > N > 2/d, and so 2/(n + 1) < d. But then
the distance from the term zn = (n− 1)/(n+ 1) to the proposed limit
w = 1 is∣∣∣∣n− 1

n+ 1
− 1

∣∣∣∣ =

∣∣∣∣n− 1− (n+ 1)

n+ 1

∣∣∣∣ =

∣∣∣∣ −2

n+ 1

∣∣∣∣ =
2

n+ 1
< d.

This argument shows that I can win every round of the convergence
game, so limn→∞

n−1
n+1

= 1.

w

d

D

z1

z2

z3 . . . zN−1 zN

zn

Figure 2.5. Convergence

As illustrated in Figure 2.5, it is helpful to think about the defini-
tion of convergence geometrically: the distance d determines a disc of
radius d centered at the point w in the complex plane. The condition
|zn − w| < d just says that the term zn is contained in that disc. So:
convergence to w can be expressed by saying that for every disc D
centered at w, the sequence is eventually contained in D: there is an
index N such that for all n ≥ N , the term zn is in D.

Example 2.16. Consider the sequence

(zn) =
(
3 + 2i+ (0.8 + 0.5i)n

)
.
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A picture of this sequence is shown below, suggesting that the sequence
converges to w = 3 + 2i.
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Suppose that you choose the distance d = 0.04 for a round of the
convergence game. To win this round, I must find an index N such that
for all n ≥ N , the term zn is contained in the disc of radius d = 0.04

centered at w = 3 + 2i. The following picture suggests that the index
N = 80 works:

2.90 2.95 3.00 3.05 3.10
real part

1.900

1.925

1.950

1.975

2.000

2.025

2.050

2.075

2.100

im
ag

in
ar

y 
pa

rt

0

20

40

60

80

100



60 2. SEQUENCES

To actually prove the convergence to w, we play the convergence
game. First note that (zn) = (w+cn) where w = 3+2i is our proposed
limit, and c = 0.8 + 0.5i. As usual, you go first, choosing a positive
distance d > 0. I must find a corresponding valid index N . We do
some scratchwork:

Scratch work: Quantity I want to be smaller than d:

|zn − w| = |w + cn − w| = |cn| = |c|n .

We have
|c| =

√
(0.8)2 + (0.5)2 ≈ 0.94 < 1.

But d > |c|n is equivalent to the condition that

ln(d) > ln(|c|n) = n ln(|c|).

Since 0 < |c| < 1, the logarithm ln(|c|) < 0 is negative, and so the
inequality reverses when we divide: ln(d)/ ln(|c|) < n. I now have an
idea for how to choose N , and I can exit the scratchwork.

For my turn, I choose an index N > ln(d)/ ln(|c|). To verify my
choice, suppose that n ≥ N . Since ln(|c|) < 0, we have

ln(|c|n) = n ln(|c|) ≤ N ln(|c|) < ln(d).

Applying the exponential function ex to both sides of this inequality
then yields |c|n < d. Finally, we find that

|zn − w| = |w + cn − w| = |cn| = |c|n < d.

This shows that I can win every round of the convergence game, and
so limn→∞ zn = w.

Example 2.17 (Babylonian sequence for
√

2). Consider the follow-
ing recursively defined sequence of real numbers (xn):

x0 = 1 and xn =
1

2

(
xn−1 +

2

xn−1

)
for n ≥ 1.

Here are the first 8 terms of the sequence, to 14 decimal places of
precision:
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x0 = 1

x1 = 1.5

x2 ≈ 1.41666666666667

x3 ≈ 1.41421568627451

x4 ≈ 1.41421356237469

x5 ≈ 1.41421356237309

x6 ≈ 1.41421356237309

x7 ≈ 1.41421356237309

It certainly seems that this sequence is converging—and quickly!—to
a value close to 1.41421356237309. You may recognize this number as
the beginning of the decimal expansion of

√
2. And indeed, here are

the squares of the first 8 terms listed above, again to 14 decimal places
of precision:

x20 = 1

x21 = 2.25

x22 ≈ 2.00694444444444

x23 ≈ 2.00000600730488

x24 ≈ 2.00000000000451

x25 ≈ 2.00000000000000

x26 ≈ 2.00000000000000

x27 ≈ 2.00000000000000

Be careful: despite appearances, none of the squares x2n are exactly
equal to 2, but they are getting arbitrarily close as n increases. That
is, the sequence of squares (x2n) is converging to 2, and the sequence
(xn) itself is converging to

√
2. We will prove this in Example 2.48

of Section 2.6. The next exercise asks you to investigate some similar
sequences.

Exercise 2.6. Fix a positive real number r > 0 and an initial guess
xguess > 0 for

√
r. Consider the recursively defined sequence (xn):

x0 = xguess and xn =
1

2

(
xn−1 +

r

xn−1

)
for n ≥ 1.

Use a web browser to navigate to SageMathCell, located at
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https://sagecell.sagemath.org
Copy and paste the Python code provided below into the window, being
careful to fix any indentation problems that may arise in the process.
Now click Evaluate. This code prints the first N = 10 terms of the
sequence (xn) for r = 17 and xguess = 4. It then prints out the values
of r and x2N−1. By changing the values of N , r, and xguess, you can
investigate the behavior of these sequences. Based on your investiga-
tions, do you think that (xn) always converges to

√
r?

r = 17
x_guess = 4
N = 10
x = x_guess
print("x_0 = " + str(x))
for n in range(1, N):

x = 0.5*(x + r/x)
print("x_{:d} = ".format(n) + str(x))

print("\n r = " + str(r))
print("(x_{:d})^2 = ".format(n) + str(x^2))

We now prove a proposition showing the relationship between bound-
edness and convergence.

Proposition 2.18. Suppose that the sequence (zn) converges to w.
Then (zn) is bounded.

Proof. Imagine playing the convergence game starting with a choice
of d = 1. Since the sequence converges to w, I must be able to win, so
I can choose an index N such that if n ≥ N then |zn − w| < 1. That
is, all terms of the sequence zn with n ≥ N are contained in the disc of
radius 1 centered at the point w (see Figure 2.6). Note that this disc is
itself contained within the larger disc of radius |w|+ 1 centered at the
origin. Now set B = max{|w|+ 1, |z1|, |z2|, . . . , |zN−1|}. Then B > 0 is
a bound for the sequence. Indeed, all points zn with n ≥ N (the ones
in the small disc) are bounded by |w| + 1, hence by the maximum B.
This leaves the finitely many initial terms z1, z2, . . . , zN−1, which are
also bounded by the maximum B. �

https://sagecell.sagemath.org
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w
1

z1

z2

B

z3 . . . zN−1
zN

zn

Figure 2.6. Convergent implies bounded

Remark 2.19. Note that there are bounded sequences that do
not converge. For example, the sequence (0,−1, 0,−1, 0,−1, . . . ) is
bounded, but it does not converge: half of the terms are zero and half
are −1, so there is no single number w that the terms are getting close
to. (See Proposition 2.24 for more about this last assertion.)

To end this section, we briefly review the definition of the Rie-
mann integral of a continuous function from your one-variable calculus
course—this provides an excellent example of the central importance
of convergent sequences for calculus.

Recall the setup: we have a continuous real-valued function f de-
fined on a closed interval [a, b]. For illustrative purposes, let’s sup-
pose that f is nonnegative, so that its graph lies entirely above the
x-axis (see Figure 2.7). Our motivation is to find the exact area un-
der the graph of f over the interval [a, b]. The strategy is a natu-
ral one, relying on the fact that we can easily compute the areas of
rectangles using the formula area = base × height. We make a se-
quence of approximations (R1, R2, R3, . . . ) to the true area. Here is
how we produce the nth approximation Rn, called the nth Riemann
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a= x0 x1 x2 x3 x4 b= x5

Figure 2.7. The Riemann integral computes the blue
area under the graph of f over the interval [a, b]. The
area of the 5 red rectangles is the fifth Riemann sum R5;
each of these rectangles has width ∆x = (b− a)/5.

sum: divide the interval [a, b] into n equal subintervals with endpoints
a = x0 < x1 < x2 < · · · < xn = b; each subinterval has length
∆x = (b − a)/n. We now approximate the region under the curve by
a collection of n rectangles. The jth rectangle has base [xj−1, xj] and
height f(xj), hence area f(xj)∆x. The sum Rn of the areas of these n
rectangles is then an approximation to the true area under the curve:

Rn = f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn)∆x =
n∑
j=1

f(xj)∆x.

The continuity of the function f guarantees that the sequence (Rn)

converges, and we denote the limit by the familiar symbol:∫ b

a

f(x)dx = lim
n→∞

Rn.
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Figure 2.8. Riemann sums for the integral of the poly-
nomial p(x) = x2 + 1 over the interval [1, 2].

You will see a proof of this result (the convergence of the sequence)
if you take an analysis course, and you will also extend the theory of
integration to functions with discontinuities.

Figure 2.8 shows various Riemann sums for the integral of the poly-
nomial p(x) = x2+1 over the interval [1, 2]. Here are the values of some
later terms in the sequence (to 6 decimal places of precision):

R1000 ≈ 3.334833

R1001 ≈ 3.334832

R1002 ≈ 3.334831

R1003 ≈ 3.334829

R1004 ≈ 3.334828

R1005 ≈ 3.334826

R1006 ≈ 3.334825

R1007 ≈ 3.334823

R1008 ≈ 3.334822

R1009 ≈ 3.334820
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The Riemann sums seem to be decreasing, and you might guess that
they are converging to 3.333 · · · = 10/3. Indeed, in this case we can
use the Fundamental Theorem of Calculus to compute the integral
without having to investigate the limit of the Riemann sums: since
P (x) = 1

3
x3 + x is an antiderivative of p(x) = x2 + 1, it follows that∫ 2

1

(x2 + 1)dx = P (2)− P (1) =
8

3
+ 2− 1

3
− 1 =

10

3
.

Key points from Section 2.4:

• Convergent sequences (Definition 2.14) and the conver-
gence game (page 57)
• Convergent implies bounded (Proposition 2.18)

2.5. Limit Properties

In this section, we describe some basic properties of limits. These
will allow us to work efficiently with various expressions involving lim-
its, and to compute new limits if we know some old ones. Our central
result states that limits behave well with respect to the operations of
addition, subtraction, multiplication, and division. These properties
should remind you of the limit laws for functions from calculus.

Proposition 2.20 (Limit Laws). Suppose that limn→∞ zn = z and
also that limn→∞wn = w. Then

(a) limn→∞(zn + wn) = limn→∞ zn + limn→∞wn = z + w;
(b) limn→∞(zn − wn) = limn→∞ zn − limn→∞wn = z − w;
(c) if c is a fixed complex number, then

lim
n→∞

(czn) = c lim
n→∞

(zn) = cz;

(d) limn→∞(znwn) = (limn→∞ zn) (limn→∞wn) = zw;
(e) if w 6= 0, then limn→∞(zn/wn) = z/w. More precisely: there exists

an index N such that for n ≥ N , the terms wn 6= 0, and the
sequence (zN/wN , zN+1/wN+1, zN+2/wN+2, . . . ) converges to z/w.



2.5. LIMIT PROPERTIES 67

We hope these properties are intuitively clear (although we will
present the proof of part (a) below). For instance, part (a) roughly
says that if the numbers zn are getting close to z and the numbers wn
are getting close to w, then the sums zn+wn are getting close to z+w.

Example 2.21. Here is a simple but typical use of Proposition 2.20:
we will show that the sequence of reciprocal squares(

1

n2

)
=

(
1,

1

4
,

1

9
,

1

16
,

1

25
, . . .

)
converges to zero, starting with the fact (established in Section 2.2)
that the harmonic sequence (1/n) converges to zero. Note that the
nth term of the sequence, 1/n2, is the square of the nth term of the
harmonic sequence, so we can apply part (d) of Proposition 2.20 with
zn = wn = 1/n. We find that

lim
n→∞

1

n2
= lim

n→∞

(
1

n
· 1

n

)
=

(
lim
n→∞

1

n

)
·
(

lim
n→∞

1

n

)
= 0 · 0 = 0.

Repeating this argument shows that for any integer exponent p ≥ 1,
we have limn→∞ 1/np = 0.

Example 2.22. Now we use the limit laws to investigate the se-
quence

(
n−1
n+1
− 1

n

)
. From Example 2.15, we know that

lim
n→∞

n− 1

n+ 1
= 1.

We also know that limn→∞ 1/n = 0. So we use part (b) with zn = n−1
n+1

and wn = 1
n
:

lim
n→∞

(
n− 1

n+ 1
− 1

n

)
= lim

n→∞

n− 1

n+ 1
− lim

n→∞

1

n
= 1− 0 = 1.

To prove the results of Proposition 2.20 rigorously from the formal
definition of convergence requires a bit of technical skill, so we will
prove only part (a) to give the flavor of the arguments, and omit the
other proofs. The basic idea goes as follows: since limn→∞ zn = z, I
can win the convergence game for (zn) no matter what distance I am
challenged with. The same goes for the convergent sequence (wn). I
will use my ability to win these two different convergence games in
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order to win the convergence game for the sequence of sums (zn +wn).
Now for the details:

Proof of Proposition 2.20, part (a). As usual, we play the
convergence game to show that the sequence (zn + wn) converges to
z + w. You begin by choosing a distance d > 0, and I must find an
index N such that for all indices n ≥ N , we have |zn+wn−(z+w)| < d.
Let’s begin with some scratch work:

Scratch work: Quantity I want to be smaller than d:

|zn + wn − (z + w)| = |(zn − z) + (wn − w)| ≤ |zn − z|+ |wn − w|,

using the triangle inequality (Proposition 1.7). This suggests that we
should make sure that the terms |zn− z| and |wn−w| are each smaller
than d/2. I now have an idea for how to choose N , and I can exit the
scratchwork.

To choose my index N , I first play the convergence game for (zn),
but using the smaller distance d/2. Since (zn) converges to z, I can
choose an index N1 such that if n ≥ N1, then |zn− z| < d/2. Similarly
for (wn), I can choose an index N2 such that if n ≥ N2 then |wn−w| <
d/2. I now announce my choice of index N = max{N1, N2}, which I
claim works for the sequence of sums (zn + wn).

It is your turn to verify. So suppose that n ≥ N , which means that
n ≥ N1 and n ≥ N2. Using the triangle inequality (Proposition 1.7),
we have

|zn + wn − (z + w)| = |(zn − z) + (wn − w)|
≤ |zn − z|+ |wn − w|

<
d

2
+
d

2
= d.

This concludes your verification of my index N , and since I can find
such an N for any d you choose, the sequence (zn + wn) converges
to z + w. �
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Remark 2.23. Be careful to check the hypotheses carefully before
applying the limit laws. Here are some common mistakes:

• The sequence of sums (zn + wn) may not converge if both of
the sequences (zn) and (wn) don’t converge. For instance: if
(zn) = (n) and (wn) = (1/n), then (zn) is unbounded (hence
not convergent), and so is (zn + wn) = (n+ 1

n
).

• However, if neither (zn) nor (wn) converge, it is possible that
(zn+wn) does converge. For instance, suppose that (zn) = (n)

and (wn) = (i − n). Then both sequences are unbounded
(hence not convergent), but their sum is a constant sequence
(zn + wn) = (n+ i− n) = (i)n≥1, which converges to i.

Exercise 2.7. Suppose that (zn) and (wn) are complex sequences,
and suppose that (wn) and (zn + wn) are both convergent sequences.
Use part (b) of Proposition 2.20 to prove that (zn) must be convergent
as well.

We can use the limit laws to give an easy proof of the fact that
limits are unique:

Proposition 2.24 (Uniqueness of Limits). Suppose that the se-
quence (zn) converges to w and to z. That is, suppose that

lim
n→∞

zn = z and lim
n→∞

zn = w.

Then z = w.

Proof. We use part (b) of Proposition 2.20 in reverse order:

z − w = lim
n→∞

zn − lim
n→∞

zn = lim
n→∞

(zn − zn) = lim
n→∞

(0) = 0.

It follows that z = w as claimed. �

As an important direct application of Proposition 2.20, we prove the
following result which says that the convergence of a complex sequence
is determined by the convergence of its real and imaginary parts.

Proposition 2.25. Suppose that (zn) = (an + bni) is a sequence of
complex numbers, with corresponding sequences of real and imaginary
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parts (an) = (Re(zn)) and (bn) = (Im(zn)). Then limn→∞ zn = a + bi

if and only if

lim
n→∞

an = a and lim
n→∞

bn = b.

Proof. The phrase “if and only if” means that we need to prove
both directions: the convergence of (zn) implies the convergence of (an)

and (bn), and vice versa.
First suppose that limn→∞ an = a and limn→∞ bn = b. By Propo-

sition 2.20(c), the sequence (bni) converges to bi, and then by part (a)
we have

lim
n→∞

zn = lim
n→∞

(an + bni) = lim
n→∞

an + lim
n→∞

(bni) = a+ bi.

For the other direction, suppose that limn→∞ zn = a + bi. We
will show that the sequence of real parts (an) converges to a, and
an analogous argument works for the imaginary parts. We play the
convergence game: you challenge me with a small positive number
d > 0 and I must choose an index N . Well, I know that (zn) converges
to a + bi, so I choose N such that if n ≥ N , then |zn − (a + bi)| < d.
But an − a = Re(zn − (a+ bi)), so by Proposition 1.6

|an − a| ≤ |zn − (a+ bi)| < d.

Since this is true for all n ≥ N , it follows that my index is valid, and
this means that the sequence (an) converges to a as claimed. �

Remark 2.26. The previous result implies that, in principle, we can
investigate the convergence of complex sequences (zn) by instead inves-
tigating the convergence of the real sequences (Re(zn)) and (Im(zn)).
However, this is generally not the way we will prove the convergence
of complex sequences. Nevertheless, real sequences are important in
their own right, and we will sometimes develop results and techniques
that apply only to real sequences. The point is not that we have lost
interest in complex sequences, but rather that some important results
hold only for real sequences and will ultimately help us in our study of
more general complex sequences.
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Figure 2.9. Graph of f(x) = 1/x and the harmonic sequence

If f(x) is any real function defined on the positive real numbers,
then we can manufacture an associated sequence (an) = (f(n)) by
evaluating at the positive integers.

Example 2.27. Consider the reciprocal function f : (0,∞) → R
defined by f(x) = 1/x. Then setting an = f(n) yields the harmonic
sequence (1/n) (see Figure 2.9).

Example 2.28. Now consider the arctangent function

arctan : R→ (−π/2, π/2).

Setting an = arctan(n) yields the sequence (arctan(n)) (see Figure 2.10).

Whenever a real sequence (an) arises from a real function f(x) in
this way, there is a close relationship between the limit of the sequence
and the limit of the function at infinity. Before stating this precisely,
we need to formally introduce the notion of an infinite limit for a real
sequence; this is a particular type of divergence.
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Figure 2.10. Graph of arctan(x) and the arctangent sequence

Definition 2.29. Suppose that (an) is a sequence of real numbers.
We write limn→∞ an = +∞ if for all positive numbers B > 0, there
exists an index N > 0 such that n ≥ N implies that an > B. In this
case, we say that the sequence diverges to +∞.

Similarly, we write limn→∞ an = −∞ if for all negative numbers
B < 0, there exists an index N > 0 such that n ≥ N implies that
an < B. In this case, we say that the sequence diverges to −∞.

Exercise 2.8. What is the difference between saying that the real
sequence (an) is unbounded and saying that limn→∞ an = ±∞? Can
you give an example of a positive sequence (an) that is unbounded but
which does not diverge to +∞?

Proposition 2.30. Suppose that f(x) is a real-valued function
defined on the positive x-axis, and consider the associated sequence
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(an) = (f(n)). Suppose that limx→∞ f(x) = L, where L is either a real
number or ±∞. Then limn→∞ an = L.

Proof. We treat the case where L is a real number, the cases
±∞ being similar. In your first calculus course, you may have studied
function limits in a less formal way than we are studying limits of
sequences. In that course, you may have described function limits at
infinity as follows: to say that the real number L is the limit of f(x)

as x → ∞ means that the values f(x) get arbitrarily close to L as x
gets large. Restricting attention to integral values x = n, we find that
the terms an = f(n) get arbitrarily close to L as n gets large. This
is exactly the informal definition of sequence convergence! Exercise
2.9 below challenges you to make this argument rigorous. �

Remark 2.31. The converse of the previous proposition is false in
general. That is, the behavior of the sequence (an) need not determine
the behavior of the function f(x). For instance, consider the cosine
function f(x) = cos(2πx). Then the associated sequence is constant:
(an) = (cos(2πn)) = (1)n≥1. Thus, we have limn→∞ an = 1. But
the function f(x) continues to oscillate between the extremes of ±1 as
x→∞, so it does not converge to a limit or diverge to ±∞.

Exercise 2.9. Let f : (0,∞)→ R be a real function and L a real
number. In your calculus course, you may have seen the following
formal definition for the statement that limx→∞ f(x) = L:

For every positive real number d > 0, there exists a positive real
number M > 0 such that for all x ≥M , we have |f(x)− L| < d.

(a) Write a short paragraph explaining how this formal definition cor-
responds to a more intuitive understanding of the limiting behavior
depicted in Figures 2.9 and 2.10:

lim
x→∞

1

x
= 0 and lim

x→∞
arctan(x) =

π

2
.

(b) Use the formal definition provided above together with Defini-
tion 2.14 to give a rigorous proof of Proposition 2.30 in the case
where L is a real number.
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We can use the connection between sequence limits and function
limits at infinity to find the limits of many real sequences.

Example 2.32. Look back at Figure 2.10 showing the arctangent
function and the associated sequence. The graph has a horizontal
asymptote at π/2, which means that limx→∞ arctan(x) = π/2. It fol-
lows that limn→∞ arctan(n) = π/2 as well.

Example 2.33. Consider the sequence (ln(n)/
√
n) arising from

the function f(x) = ln(x)/
√
x. Since both limx→∞ ln(x) = +∞ and

limx→∞
√
x = +∞, we will use L’Hôpital’s rule to compute the limit

of f . So begin by investigating the ratio of derivatives:

(ln(x))′

(
√
x)′

=
1/x

(1/2
√
x)

=
2
√
x

x
=

2√
x
−→ 0 as x→∞.

L’Hôpital implies that limx→∞ f(x) = 0, so limn→∞(ln(n)/
√
n) = 0.

Example 2.34 (p-sequences). Fix a real exponent p and consider
the sequence (an) = (1/np). Then

lim
n→∞

1

np
=


0 p > 0

1 p = 0

+∞ p < 0.

This follows from the limiting behavior of the functions f(x) = 1/xp

as x→∞ (see Figure 2.11).

Example 2.35 (Real Geometric Sequences). Consider the geomet-
ric sequence (an) =

(
1
2n

)
associated to the function f(x) = 1/2x. Since

limx→∞
1
2x

= 0, it follows that limn→∞
1
2n

= 0. More generally, we
can use this approach to determine the behavior of all real geometric
sequences.

Fix a nonnegative real number r ≥ 0, and consider the geometric
sequence (an) = (rn). Then

lim
n→∞

rn =


0 0 ≤ r < 1

1 r = 1

+∞ r > 1.
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Figure 2.11. Graphs of 1/xp for various p.

This follows from the limiting behavior of the functions f(x) = rx as
x→∞. (see Figure 2.12).

As an example of using real sequences to learn about complex se-
quences (Remark 2.26), we have the following simple but useful result.

Proposition 2.36. A sequence of complex numbers (zn) converges
to zero if and only if the real sequence of magnitudes (|zn|) converges
to zero.

Proof. Here is an informal proof: to say that the sequence of
complex numbers (zn) converges to zero is to say that the distances of
the numbers zn from zero get arbitrarily small. But these distances are
exactly the magnitudes |zn|, so saying that the magnitudes converge
to zero is equivalent to saying that the numbers themselves converge
to zero. The next exercise asks you to make this argument rigorous,
using the formal definition of convergence. �
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Figure 2.12. Graphs of rx for various r.

Exercise 2.10. Use Definition 2.14 to give a careful proof of Propo-
sition 2.36. The key point to notice is that ||zn|−0| = |zn−0|, so playing
the convergence game for (|zn|) is the same as playing the convergence
game for (zn). Be sure to prove both directions: if limn→∞ zn = 0 then
limn→∞ |zn| = 0, and vice-versa.

Example 2.37 (Alternating p-sequences). Fix a real exponent p
and consider the alternating p-sequence(

(−1)n+1

np

)
=

(
1,− 1

2p
,

1

3p
, − 1

4p
, . . .

)
.

First suppose p > 0. From Example 2.34, we know that the correspond-
ing sequence of magnitudes (1/np) converges to zero, so it follows from
Proposition 2.36 that

lim
n→∞

(−1)n+1

np
= 0 if p > 0.
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If p < 0, then the sequence of magnitudes (1/np) diverges to +∞, and
so the alternating sequence is unbounded, hence does not converge.

For p = 0 we have the divergent sequence (1,−1, 1,−1, . . . ).

Example 2.38 (Complex Geometric Sequences). Consider the geo-
metric sequence (cn) =

((
i
2

)n). The corresponding sequence of mag-

nitudes is (|cn|) =
(

1
2n

)
which converges to zero by Example 2.35. It

follows from Proposition 2.36 that limn→∞
(
i
2

)n
= 0 as well. As before,

we can use this approach to determine the behavior of all complex
geometric sequences.

Fix a complex number c and consider the geometric sequence (cn).
First suppose |c| < 1. From Example 2.35, the corresponding sequence
of magnitudes (|cn|) = (|c|n) converges to zero, so Proposition 2.36 says
that

lim
n→∞

cn = 0 if |c| < 1.

If |c| > 1, then the sequence of magnitudes (|c|n) diverges to +∞, and
so the original sequence (cn) is unbounded, hence divergent.

For |c| = 1, the complex number c lies on the unit circle. You inves-
tigated these sequences in Exercise 2.2. Except for the case c = 1,
none of these sequences converge, but instead rotate around the unit
circle forever.

Key points from Section 2.5:

• Limit laws (Proposition 2.20)
• Real and imaginary parts of complex limits (Proposi-
tion 2.25)
• Relation between function limits at infinity and sequence
limits (Proposition 2.30)
• Behavior of p-sequences (Examples 2.34 and 2.37) and
geometric sequences (Examples 2.35 and 2.38)
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2.6. The Monotone Convergence Theorem (R)

This section takes place entirely in the context of the real numbers R.

As mentioned in Remark 2.26 from the previous section, we will
often develop strong results that apply only to real sequences, and
then later use those results to study more general complex sequences.
This section is devoted to an important result of this type, called the
Monotone Convergence Theorem. It applies only to a special kind of
real sequence, presented in the following definition.

Definition 2.39. A sequence of real numbers (xn) is increasing if
xn ≤ xn+1 for all indices n ≥ 1. Similarly, the sequence is decreasing
if xn ≥ xn+1 for all indices n ≥ 1. The sequence is monotone if it is
either increasing or decreasing.

Example 2.40. Here are two examples and a non-example:

(a) The sequence of counting numbers (n) = (1, 2, 3, . . . ) is increasing;
(b) The harmonic sequence (1/n) = (1, 1/2, 1/3, . . . ) is decreasing;
(c) The alternating harmonic sequence (1,−1/2, 1/3,−1/4, . . . ) is not

monotone.

Remark 2.41. Recall that a general complex sequence (zn) is bounded
if it is entirely contained within a finite disc (see Figure 2.3). Special-
izing to real sequences (xn), we see that (xn) is bounded if it is entirely
contained within a finite interval [−B,B]:

0 B−B
( )

x1x2 x3 x4

xn

· · ·
· · ·

In the context of real sequences, two additional notions of bound-
edness are often useful: we say that (xn) is bounded above if there is
an upper bound U such that xn ≤ U for all n. Likewise, we way that
(xn) is bounded below if there is an lower bound L such that L ≤ xn

for all n. Here are three simple examples:

• the sequence of counting numbers (n) = (1, 2, 3, . . . ) is bounded
below (by L = 0 for example) but not bounded above;
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• the sequence of negative counting numbers defined by (−n) =

(−1,−2,−3, . . . ) is bounded above (by U = −1 for example)
but not bounded below.
• the harmonic sequence (1/n) is bounded above by U = 1 and
bounded below by L = 0.

Exercise 2.11. Show that a real sequence is bounded exactly when
it is bounded above and bounded below.

Exercise 2.12. Suppose that U is an upper bound for a convergent
real sequence (an), so that an ≤ U for all n. Show that limn→∞ an ≤ U .

This new language is especially useful for monotone sequences (xn):

• If (xn) is increasing, then the first term x1 provides a lower
bound for the sequence. Hence to prove that an increasing
sequence is bounded, we just need to find an upper bound.
• Similarly, if (xn) is decreasing, then the first term x1 provides
an upper bound for the sequence. So to prove that a decreasing
sequence is bounded, we just need to find a lower bound.

Example 2.42. It is often not immediately obvious whether a se-
quence is monotone. For instance, consider the sequence (xn) with

xn =
2n− 3

2n+ 3
.

Here is the beginning of the sequence, starting with the index n = 1:

(−1/5, 1/7, 3/9, 5/11, 7/13, 9/15, . . . ).

These terms are increasing, but are we sure that this continues? We
need to prove that for each integer n ≥ 1 the inequality xn ≤ xn+1 is
valid; so far we have only checked the first few cases. Instead of proving
xn ≤ xn+1, we will prove the equivalent statement xn+1 − xn ≥ 0. The
proof consists of carefully manipulating the general expression: for any
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value of n ≥ 1, we have

xn+1 − xn =
2(n+ 1)− 3

2(n+ 1) + 3
− 2n− 3

2n+ 3

=
2n− 1

2n+ 5
− 2n− 3

2n+ 3

=
(2n− 1)(2n+ 3)− (2n− 3)(2n+ 5)

(2n+ 5)(2n+ 3)

=
4n− 3− (4n− 15)

(2n+ 5)(2n+ 3)

=
12

(2n+ 5)(2n+ 3)

> 0.

This shows that the sequence (xn) is increasing.
Note that the sequence is also bounded above (hence bounded): the

numerator 2n−3 is always less than the denominator 2n+3, so xn < 1

for all n.
Finally, let’s use the limit laws to show that (xn) converges; be sure

you can justify each step using Proposition 2.20:

lim
n→∞

2n− 3

2n+ 3
= lim

n→∞

2− 3
n

2 + 3
n

=
limn→∞(2− 3

n
)

limn→∞(2 + 3
n
)

=
2− 3 limn→∞

1
n

2 + 3 limn→∞
1
n

=
2− 3 · 0
2 + 3 · 0

= 1.

In the previous example we looked at a real sequence (xn) having
all three of the following properties:

• monotone;
• bounded;
• convergent.
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We already know about the relationship between boundedness and con-
vergence: all convergent sequences are bounded (Proposition 2.18) but
not all bounded sequences converge. What about the relationship be-
tween monotonicity and convergence? Well, there is no immediate
implication in either direction:

• The alternating harmonic sequence ((−1)n+1/n) converges to
zero but is not monotone;
• The sequence (n) = (1, 2, 3, . . . ) is monotone but does not
converge.

However, boundedness plus monotonicity is sufficient to guarantee con-
vergence.

Theorem 2.43 (Monotone Convergence Theorem). Suppose that
the real sequence (xn) is monotone and bounded. Then (xn) converges.

The Monotone Convergence Theorem (MCT) relies on a special
property of the real numbers called completeness—see the optional
Section 2.7 to learn more about completeness and to see a full proof
of the MCT. For now, we will provide only a partial argument for the
MCT, but one which provides good intuition.

Partial Proof of MCT: Imagine that we have a bounded and increas-
ing real sequence x1 ≤ x2 ≤ x3 ≤ . . . . In particular, there exists an
upper bound U > 0 such that xn ≤ U for all n. Think of U as a ceiling:
the sequence is going up (or possibly staying the same), but it never
gets higher than U . You may already be feeling that the sequence
must converge, but just to sharpen that intuition, let’s investigate a
little further by playing the convergence game.

We don’t yet have a candidate limit, but you begin anyway by
challenging me with a small positive number d > 0. I must respond
with an index N , but first I do some preliminary work: consider the
decreasing sequence

(U,U − d, U − 2d, U − 3d, . . . ).

Think of this as lowering the ceiling in steps of size d:
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UU − dU − 2d· · ·U ′U ′ − d

U − (k − 1)dU − kd
x1

x2

x3 · · · xN · · · xn

There will be a first positive integer k such that U − kd is not an
upper bound for the sequence (xn). Having found this integer k, set

U ′ = U − (k − 1)d

so that U ′ is an upper bound for the sequence, but U ′ − d is not an
upper bound. Having adjusted the ceiling in this manner, I am now
ready to choose my index N .

Since U ′ − d is not an upper bound, there exists an index N such
that xN > U ′ − d; this is my chosen index. So consider any index
n ≥ N . The sequence is increasing, so we have xN ≤ xn. But U ′ is an
upper bound for the sequence, so putting all of this together yields

U ′ − d < xN ≤ xn ≤ U ′.

This means that all but the first N − 1 terms of the sequence are
contained in the half-open interval (U ′ − d, U ′], which has length d.

The upshot: no matter how small of a distance d > 0 you specify,
all but finitely many terms of the sequence are huddled together in an
interval of size d. Since they are all so close to each other, it is plausi-
ble that they are getting close to some particular real number a, which
would then be their limit. The existence of the limit a is a consequence
of the completeness of the real numbers, as explained in the optional
Section 2.7.

The MCT is a powerful tool for proving the convergence of mono-
tone sequences (xn): instead of playing the convergence game, we sim-
ply need to show that (xn) is monotone and bounded. In Example 2.42,
we saw how to establish these properties by working directly with an
explicit formula for the general term xn. But many sequences have a
recursive definition, and we may not have an explicit formula to work
with. In these situations, we will often use a proof technique called



2.6. THE MONOTONE CONVERGENCE THEOREM (R) 83

induction. We introduce this technique with the following example,
and then we will discuss it more formally.

Example 2.44. Consider the recursively defined sequence (tn) de-
fined by

t0 = 0 and tn = tn−1 + n for n ≥ 1.

The following picture indicates why these are called “triangular num-
bers.”

t0 = 0 t1 = 1 t2 = 3 t3 = 6 t4 = 10

We are going to show that for all n ≥ 0, we have tn = n(n+1)
2

. Our
proof will be an example of the induction technique.

Here is the idea: we want to prove that for all n ≥ 0, the following
equality is true:

tn =
n(n+ 1)

2
.

Note that this is really an infinite list of equalities, one for each value
of n. We begin by checking that the base case n = 0 is valid:

t0 = 0 =
0 · (0 + 1)

2
.

So now we know the case n = 0, and we want to prove the case
n = 1. And after that, we will want to prove the case n = 2, etc.
Induction allows us to make a single argument that accounts for all of
these at once: we assume that the equality holds for some generic value
n = k, and then we use that information to prove that the inequality
must also hold for the next value n = k + 1.

So suppose that tk = k(k+1)
2

for some value n = k. This assumption
is called the induction hypothesis. Then use the recursive definition to
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find tk+1:

tk+1 = tk + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
.

This is the desired equality for n = k+1. The principle of mathematical
induction below now says that the stated equalities hold for all n ≥ 0.

The previous example introduced the technique of induction in or-
der to establish an infinite list of equalities. This technique rests on
the following fact about the natural numbers.

Principle of Mathematical Induction: Suppose that (P(n)) is
a sequence of mathematical statements, one for each natural number
n ≥ 0. Moreover, suppose that

• The statement P(0) is true;
• for every n ≥ 0, the truth of statement P(n) implies the truth
of statement P(n+ 1).

Then P(n) is true for every n ≥ 0.

In the previous example, P(n) was the equality tn = n(n+1)
2

. The
proof began by establishing the truth of the base case P(0). Then we
made the induction step by proving that if the equality P(n) is true
for some value n, then the equality P(n+ 1) is also true.

As a second example of induction, we prove the factorial formula
for the binomial coefficients announced on page 47. Recall that the
integer

(
n
k

)
is the coefficient of zk in the expansion of the polynomial

(1 + z)n. Moreover, in Proposition 2.10, we established the Pascal
triangle recursion(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
for 0 < k < n.
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Proposition 2.45. For 0 ≤ k ≤ n, we have(
n

k

)
=

n!

k!(n− k)!
.

Proof. There are two indices here, n and k, so we must decide
which one to use for induction. We will use the index n, and here is
the statement P(n) that we wish to prove for every n ≥ 0:

P(n) : for 0 ≤ k ≤ n,
(
n

k

)
=

n!

k!(n− k)!
.

Let’s begin by checking explicitly that P(0) is true: if n = 0, then the
only value for k is k = 0, and we have

0!

0!(0− 0)!
=

1

1 · 1 = 1 =

(
0

0

)
.

Now we assume the induction hypothesis that P(n) is true for some
value of n ≥ 0, which means that we are assuming the factorial formula
holds for all values 0 ≤ k ≤ n. We now need to prove that P(n+ 1) is
true. We start by explicitly checking the two cases k = 0 and k = n+1:

k = 0 :
(n+ 1)!

0!(n+ 1− 0)!
=

(n+ 1)!

1 · (n+ 1)!
= 1 =

(
n+ 1

0

)
and

k = n+ 1 :
(n+ 1)!

(n+ 1)!(n+ 1− (n+ 1))!
=

(n+ 1)!

(n+ 1)! · 0!
= 1 =

(
n+ 1

n+ 1

)
.

So far so good. Now consider any intermediate value for k, where
0 < k < n+ 1. We make use of the recursion from Proposition 2.10:(

n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
.

By the induction hypothesis, the factorial formula holds for the bino-
mial coefficients on the right hand side. We write this out explicitly,
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and then do some careful algebra with factorials. The thing to remem-
ber when following this computation is that m! = m · (m− 1)!.(

n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)!(n− (k − 1))!
+

n!

k!(n− k)!

=
n!

(k − 1)!(n− k + 1)!
+

n!

k!(n− k)!

=
n!

(k − 1)!(n− k)!

(
1

n− k + 1
+

1

k

)
=

n!

(k − 1)!(n− k)!

(
k + (n− k + 1)

k(n− k + 1)

)
=

n!

(k − 1)!(n− k)!

(
n+ 1

k(n+ 1− k)

)
=

(n+ 1)!

k!(n+ 1− k)!
.

Thus, we have shown that the truth of P(n) implies the truth of
P(n+ 1), and so by the principle of mathematical induction, the fac-
torial formula holds for all binomial coefficients. �

Now we return to the Monotone Convergence Theorem. In the
following example, we use induction to prove that the given sequence
is monotone and bounded.

Example 2.46. Consider the recursively defined sequence (xn) with

x0 = 1 and xn =
1

3− xn−1
for n ≥ 1.

Here are the first few terms:

(xn) =

(
1,

1

2
,

2

5
,

5

13
,

13

34
, . . .

)
.

These initial terms are in the interval (0, 1] and are decreasing; we want
to prove that this continues. We will use induction. We first show that
the sequence is bounded. So for each n ≥ 0, let P(n) be the following
chain of inequalities:

0 < xn ≤ 1.
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The base case n = 0 is clearly true, since x0 = 1. For the induction
step, we now assume that 0 < xk ≤ 1 for some value n = k. Then
multiplying by −1 changes the directions of the inequalities:

−1 ≤ −xk < 0.

Now add 3 and take reciprocals, which changes the directions again:
1

3
<

1

3− xk
≤ 1

2
.

The inner expression is the next term xk+1, so we conclude that the
statement P(k + 1) is true, namely that 0 < xk+1 ≤ 1. By induction,
the sequence (xn) is bounded.

Now we use induction to prove that (xn) is a decreasing sequence.
This time, the statement P(n) is the inequality xn+1 ≤ xn. The base
case n = 0 certainly holds:

x0 = 1 and x1 =
1

2
, so x1 < x0.

For the induction step, we now assume that xk+1 ≤ xk for some value
n = k. The proof is similar to the one for boundedness: multiplying
by −1 changes the direction of the inequality:

−xk+1 ≥ −xk.

Now add 3:
3− xk+1 ≥ 3− xk.

Note that neither side is zero, since we know that all terms of the se-
quence are between 0 and 1. So we can take reciprocals, which changes
the directions again:

1

3− xk+1

≤ 1

3− xk
.

We recognize these expressions from the recursive definition of the se-
quence:

xk+2 ≤ xk+1.

This is the inequality P(k + 1), and the principle of mathematical
induction says that the sequence (xn) is decreasing. Since (xn) is also
bounded, it converges by the MCT. We set x = limn→∞ xn.
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Now that we know the limit x exists, we can use the limit laws
together with the recursive definition to find it. First note that we
have two slightly different sequences to consider when taking the limit
of the recursive definition xn = 1/(3− xn−1) for n ≥ 1:

(xn) = (x1, x2, x3, . . . )

and
(xn−1) = (x0, x1, x2, . . . ).

The second sequence (xn−1) is the same list of numbers in the same
order, just with the additional term x0 at the beginning. In any case,
these two lists of numbers both converge to x. Taking the limit of the
recursive definition yields

x = lim
n→∞

xn = lim
n→∞

(
1

3− xn−1

)
=

1

3− limn→∞ xn−1
=

1

3− x.

Rearranging, we find that x must be a root of the quadratic polynomial
p(x) = x(x − 3) + 1 = x2 − 3x + 1. Using the quadratic formula, we
find the two roots of p(x):

r1 =
3 +
√

5

2
, r2 =

3−
√

5

2
.

Note that r1 > 2, while all terms xn ≤ 1. So r1 can’t be the limit, and
it must be that x = r2 = 3−

√
5

2
.

We will need the following result for our next example:

Proposition 2.47 (Inequality of Arithmetic and Geometric Means).
Suppose that a, b > 0 are positive real numbers. Then

√
ab ≤ 1

2
(a+ b).

Proof. Begin by observing that

0 ≤ (a− b)2 = a2 − 2ab+ b2.

Now add 4ab to both sides and factor:

4ab ≤ a2 + 2ab+ b2 = (a+ b)2.
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Finally, divide by 4 and take the square root:
√
ab ≤ 1

2
(a+ b).

�

Example 2.48. Recall the Babylonian sequence from Example 2.17:

x0 = 1 and xn =
1

2

(
xn−1 +

2

xn−1

)
for n ≥ 1.

We have seen numerical evidence that (xn) converges to
√

2. We now
prove this by using the MCT. As a first step, we use the inequality of
arithmetic and geometric means to show that for all n ≥ 1 we have

xn =
1

2

(
xn−1 +

2

xn−1

)
≥
√
xn−1 ·

2

xn−1
=
√

2.

Thus, the sequence (xn) is bounded below by
√

2. (Note that we are
ignoring the first term x0 = 1, which does not change the convergence
behavior of the sequence.)

Now we will use induction to prove that the sequence is decreasing.
We begin with the base case n = 1:

x1 =
3

2
and x2 =

1

2

(
3

2
+

2 · 2
3

)
=

3

4
+

2

3
<

3

2
= x1.

For the induction step, assume that xk ≥ xk+1 for some value n = k.
We need to prove that xk+1 ≥ xk+2. For this, we will use some ideas
from calculus. Consider the function f(x) = 1

2

(
x+ 2

x

)
, so xk+1 = f(xk)

and xk+2 = f(xk+1). The derivative of f is given by

f ′(x) =
1

2
− 1

x2
.

This shows that f ′(x) ≥ 0 for all x ≥
√

2. This means that the
function is weakly increasing to the right of

√
2: if

√
2 ≤ a ≤ b, then

f(a) ≤ f(b). But by the induction hypothesis, we have xk+1 ≤ xk,
so we find that xk+2 = f(xk+1) ≤ f(xk) = xk+1. By the principle
of mathematical induction, the sequence is decreasing. Hence, by the
MCT, the sequence (xn) converges to some limit x.
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To prove that x =
√

2, we take the limit of the recursion:

x = lim
n→∞

xn

= lim
n→∞

1

2

(
xn−1 +

2

xn−1

)
=

1

2

(
lim
n→∞

xn−1 +
2

limn→∞ xn−1

)
=

1

2

(
x+

2

x

)
.

Rearranging then shows that x2 = 2, so that x =
√

2 as expected.

Remark 2.49. We can use the Monotone Convergence Theorem
to provide a justification for what is likely the way you have always
thought about real numbers. Namely, if I had asked you 3 weeks ago to
tell me what a real number is, you probably would have said something
about a decimal expansion, with finitely many digits to the left of the
decimal point, but possibly infinitely many to the right:

c1c2 · · · ck.d1d2d3 · · ·

For instance, you might have said that π is the decimal expansion with
c1 = 3 and d1 = 1, d2 = 4, d3 = 1, d4 = 5, d5 = 9, d6 = 2, d7 = 6, . . . :

π = 3.1415926 · · ·

Of course, you can never finish telling me the decimal expansion of a
real number in this way, but the idea is that every sequence of digits
is allowed. The act of telling me a particular decimal expansion is the
same as providing a sequence of rational numbers (x0, x1, x2, . . . ):

x0 = c1 · · · ck
x1 = c1 · · · ck.d1
x2 = c1 · · · ck.d1d2
x3 = c1 · · · ck.d1d2d3

...



2.7. OPTIONAL: COMPLETENESS 91

Moreover, note that this sequence is both monotone and bounded (by
|x0| + 1, for instance). By the Monotone Convergence Theorem, the
sequence converges to a real number, namely the number you are trying
to tell me about!

For more about what it means to specify a real number, and also
about why we need the real numbers rather than the rationals for
calculus, read the optional Section 2.7.

Key points from Section 2.6:

• Monotone sequences (Definition 2.39)
• Monotone Convergence Theorem (Theorem 2.43)
• Principle of Mathematical Induction (page 84)
• Induction proofs with recursive sequences (Exam-
ples 2.44, 2.46, 2.48)

2.7. Optional: Completeness

The structure of Definition 2.14 suggests that, in order to prove
that a sequence (zn) converges, we need to have a candidate limit w
in mind, so that we can investigate the distances |zn − w| and play
the convergence game. But there is a problem: we generally do not
have an explicit way of naming the limit w, except to say that it is the
limit of the sequence we are investigating! In order to illustrate this
point, we present two examples from the theory of integration reviewed
on pages 63–66. In the first example, we do have an explicitly named
candidate for the limit, while in the second example, we do not.

Example 2.50. Consider the integral of the function p(x) = x2 + 1

over the closed interval [1, 2]. If Rn is the nth Riemann sum of p(x)

over this interval, then∫ 2

1

(x2 + 1)dx = lim
n→∞

Rn.
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However, this is not the way we generally compute this integral. In-
stead, we find an antiderivative P (x) = 1

3
x3 + x and use the Funda-

mental Theorem of Calculus:∫ 2

1

(x2 + 1)dx = P (2)− P (1) =
8

3
+ 2− 1

3
− 1 =

10

3
.

So, in this case we have an explicitly named candidate for the limit of
the sequence (Rn), and we could use the definition of convergence to
directly prove that the sequence does indeed converge to the rational
number 10/3.

Example 2.51. Now consider the integral of the continuous func-
tion f(x) = ln(ln(x)) over the closed interval [3, 4]. Again, if Rn is the
nth Riemann sum of f(x) over this interval, then∫ 4

3

ln(ln(x))dx = lim
n→∞

Rn.

You are likely tempted to use the Fundamental Theorem of Calculus
to compute this integral, by finding an antiderivative. However, you
may be surprised to learn that there is no elementary formula for an
antiderivative of f(x)! So, in this case we cannot describe the limit
any more explicitly than to say it is the number that the sequence
(Rn) converges to. Here are some of the terms of the sequence (to 8
decimal places of precision).

R1000 ≈ 0.22051334

R1001 ≈ 0.22051322

R1002 ≈ 0.22051311

R1003 ≈ 0.22051299

R1004 ≈ 0.22051288

R1005 ≈ 0.22051276

R1006 ≈ 0.22051265

R1007 ≈ 0.22051253

R1008 ≈ 0.22051242

R1009 ≈ 0.22051230

This example provides a hint of why sequences are so important
in mathematics: many of the things we wish to discuss (e.g., areas



2.7. OPTIONAL: COMPLETENESS 93

under curves) cannot be described in explicit, finite terms, but instead
can only be named as the limits of infinite sequences. In fact, most
real numbers are like this, in contrast to rational numbers. If I have
a particular rational number in mind, then I have no trouble telling
you exactly which one it is: I simply tell you that it is the ratio of two
particular integersm/n. But if I have a particular real number in mind,
how can I communicate it to you? Some numbers, like

√
2 and π, can

be easily communicated because they have some special algebraic or
geometric property:

√
2 is the only positive real number with square 2;

the number π is the ratio circumference/diameter for any circle. But
most real numbers don’t have such special properties, so how do we
name them?

Well, you may be thinking: just tell me the decimal expansion,
and then I will know the number. True, but note that the decimal
expansion of an irrational real number is infinite and non-repeating, so
the best I can do is tell you more and more digits. When I do this, I
am really providing a sequence of rational numbers that converges to
the real number I have in mind:

(3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, . . . ).

is the beginning of this sequence of rational approximations of π.
So, if real numbers are so much harder to name than rational num-

bers, why do we bother with them? Why not simply do calculus using
rational numbers? After all, if I ask you to visualize the rational num-
bers, you will probably see the same mental image that you use for
the reals: a line stretching to the left and right without bound. But it
turns out that there are lots and lots of tiny “holes” in the rational line,
despite the fact that between any two rational numbers there is an-
other rational number (their average, for instance). These holes in the
rational numbers are bad for calculus, essentially because they prevent
many sequences from converging. The real numbers are exactly the
result of plugging these holes, and the lack of holes in the reals makes
them suitable for the development of calculus. The technical term for
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this property of the real numbers is completeness—if you later take an
analysis course, you will study the concept of completeness in depth.

The most famous hole in the rational numbers is the square root
of 2:

Proposition 2.52. There is no rational number m/n with the
property that (m/n)2 = 2.

Proof. We will get a contradiction by supposing that there is such
a rational number m/n. We can assume that the integers m and n are
both positive and share no common factors. In particular, at most one
of them is even. But if (m/n)2 = 2, then m2 = 2n2 and m2 must be
even. But the square of an odd number is odd, which means that m
itself must be even. So we can write m = 2k for some positive integer
k. But then we find that 2n2 = m2 = (2k)2 = 4k2, and dividing by
2 yields n2 = 2k2, showing that n2 is also even. But this implies that
n itself is even, contradicting our assumption that m and n share no
factors. �

OK, but why does this constitute a hole in the rational numbers?
After all, there is no rational number whose square is −1, but we don’t
think of this as a hole in the rationals. The point is that we picture pos-
itive rational numbers as distances along a line, and the Pythagorean
theorem assures us that the square root of 2 is a geometrically necessary
distance:

1

1

√
2

So, there is a distance with square 2, but that distance is not a ra-
tional number. (This discovery was extremely upsetting to the ancient
Greeks.) Moreover, there are rational numbers with squares arbitrarily
close to 2. For instance, consider the Babylonian sequence (xn) from
Examples 2.17 and 2.48, which is a rational sequence that converges
to
√

2. By our uniqueness result (Proposition 2.24) and the fact that√
2 is irrational, this means (xn) does not converge to any rational
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number—there is a hole in the rational numbers where
√

2 should be,
and the irrational real number

√
2 plugs that hole.

The trouble with this description of holes and completeness is that
we have been forced to repeatedly mention the irrational number

√
2

in order to explain why the rationals have a hole where that number
should be. That is, it seems that we need to know what plugs a hole
in order to know that there is a hole. It would be better if we could
instead detect holes directly, without reference to the eventual plug.
For this, we need to introduce a new idea.

At first glance, the following definition looks very similar to the
definition of convergence:

Definition 2.53. A sequence of complex numbers (zn) is Cauchy
if for all real numbers d > 0, there exists an index N > 0 such that
|zn − zm| < d for all indices n,m ≥ N .

Note the key difference from Definition 2.14: there is no mention
of a limit w, and instead of discussing the distances |zn−w|, it speaks
of the distances |zn − zm| between different terms of the sequence. In
order to unpack this new definition, we formulate it as a game.

The Cauchy Game:

(1) You go first, and you challenge me with a small distance d > 0.
(2) Now it is my turn. Knowing your choice of distance d, I inves-

tigate the sequence (zn) and try to find an index N such that
all terms with index N or greater are closer to each other than
your distance d. If there is such an index N , then I announce
it; if no such N exists, then I lose the game.

(3) Now it is your turn again, and you verify my choice by trying
to demonstrate that for all pairs of indices n,m with n,m ≥ N ,
we have |zn − zm| < d. If you can find a counterexample to
this assertion, then you have shown that my N is not valid; if
your demonstration succeeds, then my N is valid, and I win
this round of the game.

(4) Now we return to step (1) and play another round.



96 2. SEQUENCES

To say that the sequence (zn) is Cauchy is to say that I will win every
round of the Cauchy game.

It may be helpful to compare the following imprecise but brief de-
scriptions of our two notions:

• (Convergent) The terms of the sequence (zn) get arbitrarily
close to the limit w.
• (Cauchy) The terms of the sequence (zn) get arbitrarily close
to each other.

We have been describing holes in the rationals using the concept of
convergence: for example, the Babylonian sequence of rational numbers
(xn) converges to the irrational number w =

√
2, and this means that

there is a hole in the rationals. But (xn) is also a Cauchy sequence, so
what we have here is a Cauchy sequence of rational numbers that does
not converge to a rational number. Indeed, the next proposition shows
that every convergent sequence is Cauchy.

Proposition 2.54. Suppose that (zn) is a convergent sequence.
Then (zn) is a Cauchy sequence.

Proof. Let’s play the Cauchy game. You challenge me with a
distance d > 0. Now I do something a bit clever: I imagine that you

w

d/2

z1

z2

z3 . . .
zN−1

zN

zn

zm

Figure 2.13. Convergent implies Cauchy
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instead chose d/2. Since the sequence converges to some limit w, I can
find an index N such that for all n ≥ N , the term zn is in the disc of
radius d/2 centered at w (see Figure 2.13). But then for any pair of
indices n,m ≥ N , both of the terms zn and zm are contained in the
disc of radius d/2 centered at w. The diameter of this disc is d, so
any two points of the disc are separated by a distance less than d. In
particular, we have |zn − zm| < d as required. Since I can win in this
fashion no matter what you choose for d, the sequence is Cauchy. �

The Cauchy property should appeal to your intuition in the follow-
ing way: it seems plausible that if the terms of a sequence are getting
arbitrarily close to each other, then there should be some particular
number w that the terms are getting arbitrarily close to. That is, it
seems reasonable to expect that the converse of the previous proposi-
tion should be true: if a sequence is Cauchy, then it should converge.
We encourage you to think of the Cauchy property as representing a
sequence’s desire to converge: as you look further and further out in
the sequence, the terms are huddling closer and closer together; they
want to find a single point w (their limit) to huddle around. The only
thing that could thwart the fulfillment of that desire is if there is a hole
where w should be. So, a Cauchy sequence of rational numbers that
does not converge to a rational limit signals the presence of a hole; the
existence of such holes makes the rational numbers unsuitable for cal-
culus. Note that this description of a hole does not require any mention
of the real number plug that will ultimately fill the hole.

Using the notion of Cauchy sequences, we can provide a precise for-
mulation of what we mean by the statement that the real and complex
numbers have no holes:

Cauchy Completeness of R and C: The real numbers R are Cauchy
complete: every Cauchy sequence of real numbers converges to a real
number. The complex numbers C are also Cauchy complete: every
Cauchy sequence of complex numbers converges to a complex number.
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Remark 2.55. We are not in a position to prove that R and C
are Cauchy complete; for that you will need to take an analysis course
later in your mathematical education. But we have shown that the
rational numbers are not Cauchy complete: the Babylonian sequence
from Examples 2.17 and 2.48 is a Cauchy sequence of rational numbers
that does not converge to a rational number.

To end this section, we will use the Cauchy completeness of R to
prove the Monotone Convergence Theorem 2.43. Recall the statement:

Monotone Convergence Theorem: Suppose that the real sequence
(xn) is monotone and bounded. Then (xn) converges.

The proof closely follows the “partial proof” provided just after the
statement of the MCT as Theorem 2.43 of Section 2.6.

Proof. Assume that the sequence (xn) is increasing (the proof of
the decreasing case is similar). Let U > 0 be an upper bound for the
sequence, so xn ≤ U for all indices n. We will show that the sequence
is Cauchy, hence convergent to a real number by Cauchy completeness.

So we play the Cauchy game. You begin by choosing a distance
d > 0. I must respond with an index N . First some preliminary
investigation: consider the decreasing sequence

(U,U − d, U − 2d, U − 3d, . . . ).

I claim that there is a positive integer k such that U−kd is not an upper
bound for the sequence (xn). This seems intuitively clear: starting at
U , I am decreasing by the fixed amount d > 0 at each step, so eventually
I must pass by one of the x’s:

UU − dU − 2d· · ·U ′U ′ − d

U − (K − 1)dU −Kd
x1

x2

x3 · · · xN · · · xm

xn
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To justify this rigorously, we can appeal to the Archimedean property
and choose k > (U − x1)/d, so that

x1 > U − kd.

Let K be the smallest such integer, so U ′ = U − (K − 1)d is an upper
bound for the sequence, but U −Kd = U ′ − d is not an upper bound.
Having adjusted the upper bound in this manner, I am now ready to
choose my index N .

Since U ′−d is not an upper bound, there exists an indexN such that
xN > U ′−d. This is my chosen index, and it is now your turn to verify
my choice. So consider any two indices n,m ≥ N . For concreteness,
assume that m ≥ n ≥ N . The sequence is increasing, so we have
xN ≤ xn ≤ xm. But U ′ is an upper bound for the sequence, so putting
all of this together yields

U ′ − d < xN ≤ xn ≤ xm ≤ U ′.

This means that xn and xm are both contained in the half-open interval
(U ′−d, U ′], which has length d. In particular, the distance between xn
and xm is less than d. Thus, my choice of N is valid. The argument
shows that I can make such a valid choice of N no matter what d
you choose, and this means that the sequence is Cauchy. By Cauchy
completeness of the real numbers, the sequence (xn) converges. �

Key points from Section 2.7:

• The irrationality of
√

2 (Proposition 2.52)
• Cauchy sequences (Definition 2.53)
• Convergent implies Cauchy (Proposition 2.54)
• Cauchy Completeness of R and C (page 97)
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2.8. In-text Exercises

This section collects the in-text exercises that you should have worked
on while reading the chapter.

Exercise 2.1 The term z0 = 0 is represented by the red dot at the
origin in Figure 2.1, and the next term z1 = c = 0.6i is represented by a
red dot on the imaginary axis. Thinking purely geometrically (using the
rotation-scale interpretation of multiplication and the parallelogram
law for addition), find the red dot representing the term z1 = c2 + c.
Can you identify the red dot representing z2? What about z3? How
far can you go?

Exercise 2.2 This exercise asks you to consider some sequences that
lie on the unit circle.

(a) Fix a positive integer m ≥ 1, and consider the complex number
a = cos(2π/m) + i sin(2π/m). Describe the sequence consisting of
the nonnegative integer powers of a:

(an) = (1, a, a2, a3, . . . ).

Draw a nice picture of this sequence for m = 6.
(b) Now fix an irrational real number s in the interval (0, 1), and de-

fine the complex number b = cos(2πs) + i sin(2πs). Describe the
sequence (bn) = (1 b, b2, b3, . . . ). What would you say is the key
difference between this sequence and the sequence (an)?

Exercise 2.3 Let (wn) denote the inverse factorial sequence from Ex-
ample 2.7. Give a recursive definition for the sequence (wn).

Exercise 2.4 Which of the sequences in Example 2.3 are bounded,
and which are unbounded?

(a) the counting numbers (n)

(b) the harmonic sequence (1/n)

(c) the alternating harmonic sequence ((−1)n−1/n)

(d) the constant sequence (i, i, i, . . . )

(e) the sequence (1, 2, 3, 1, 2, 3, . . . )
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(f) the sequence of prime numbers (2, 3, 5, 7, 11, . . . )

(g) The digits of π in base ten (3, 1, 4, 1, 5, 9, . . . )

(h) The iterative sequences (0, c, c2 + c, (c2 + c)2 + c, . . . )

Exercise 2.5 Consider the recursively defined sequence (hn):

h1 = 1 and hn = hn−1 +
1

n
for n ≥ 2.

(a) Compute the first 5 terms of the sequence (h1, h2, h3, h4, h5, . . . ) by
hand.

(b) Use a web browser to navigate to SageMathCell, located at
https://sagecell.sagemath.org

Copy and paste the Python code provided below into the window,
being careful to fix any indentation problems that may arise.

N = 100
tail_size = 10
h = 1.0
for n in range(2, N + 1 - tail_size):

h = h + 1/n
for n in range(N + 1 - tail_size, N + 1):

h = h + 1/n
print("h_{:d} = ".format(n) + str(h))

Now click Evaluate. This code computes the first N = 100 terms of
the sequence (hn) and prints out the last tail_size = 10 computed
terms to the screen. By changing the values of N and tail_size,
you can investigate the behavior of the sequence. Based on your
investigations, do you think the sequence (hn) is bounded?

Exercise 2.6 Fix a positive real number r > 0 and an initial guess
xguess > 0 for

√
r. Consider the recursively defined sequence (xn):

x0 = xguess and xn =
1

2

(
xn−1 +

r

xn−1

)
for n ≥ 1.

Use a web browser to navigate to SageMathCell, located at

https://sagecell.sagemath.org

https://sagecell.sagemath.org
https://sagecell.sagemath.org
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Copy and paste the Python code provided below into the window, being
careful to fix any indentation problems that may arise in the process.
Now click Evaluate. This code prints the first N = 10 terms of the
sequence (xn) for r = 17 and xguess = 4. It then prints out the values
of r and x2N−1. By changing the values of N , r, and xguess, you can
investigate the behavior of these sequences. Based on your investiga-
tions, do you think that (xn) always converges to

√
r?

r = 17
x_guess = 4
N = 10
x = x_guess
print("x_0 = " + str(x))
for n in range(1, N):

x = 0.5*(x + r/x)
print("x_{:d} = ".format(n) + str(x))

print("\n r = " + str(r))
print("(x_{:d})^2 = ".format(n) + str(x^2))

Exercise 2.7 Suppose that (zn) and (wn) are complex sequences, and
suppose that (wn) and (zn + wn) are both convergent sequences. Use
part (b) of Proposition 2.20 to prove that (zn) must be convergent as
well.

Exercise 2.8 What is the difference between saying that the real
sequence (an) is unbounded and saying that limn→∞ an = ±∞? Can
you give an example of a positive sequence (an) that is unbounded but
which does not diverge to ∞?

Exercise 2.9 Let f : (0,∞)→ R be a real function and L a real num-
ber. In your calculus course, you may have seen the following formal
definition for the statement that limx→∞ f(x) = L:

For every positive real number d > 0, there exists a positive real number
M > 0 such that for all x ≥M , we have |f(x)− L| < d.
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(a) Write a short paragraph explaining how this formal definition cor-
responds to a more intuitive understanding of the limiting behavior
depicted in Figures 2.9 and 2.10:

lim
x→∞

1

x
= 0 and lim

x→∞
arctan(x) =

π

2
.

(b) Use the formal definition provided above together with Defini-
tion 2.14 to give a rigorous proof of Proposition 2.30 in the case
where L is a real number.

Exercise 2.10 Use Definition 2.14 to give a careful proof of Proposi-
tion 2.36. The key point to notice is that ||zn|−0| = |zn−0|, so playing
the convergence game for (|zn|) is the same as playing the convergence
game for (zn).

Exercise 2.11 Show that a real sequence is bounded exactly when it
is bounded above and bounded below.

Exercise 2.12 Suppose that U is an upper bound for a convergent
real sequence (an), so that an ≤ U for all n. Show that limn→∞ an ≤ U .
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2.9. Problems

2.1. Write the first 6 terms of the sequence:

(a)
(

cos
(
πn
4

)
+ i sin

(
πn
4

))
n≥1

(b)
(

(−i)n 1
n+3

)
n≥0

(c)
(

(−1)n n
n+1

)
n≥1

(d)
((−i

2

)n)
n≥0

(e)
(
n
n!

)
n≥1

2.2. What are the next three terms of the sequence? Explain.

(1, 11, 21, 1211, 111221, 312211, . . . ).

2.3. Find two non-constant sequences (zn) and (wn) such that the
sequence of products (znwn) is a constant sequence.

2.4. Prove that the sequence
(

2n2+3
n2+1

)
is bounded.

2.5. For the following sequences and proposed limit points w, start
by playing the convergence game and filling out the following table (if
possible):

d = desired closeness to w N = index to achieve d
1/2

1/4

1/10

1/100

If you believe that you can win every round of the convergence
game, then prove that the sequence converges to w. If there exists a
choice of d > 0 for which you will lose the convergence game, use it to
prove that the sequence does not converge to the proposed limit w:

(a)
(

1
n+2

)
n≥0

w = 0

(b)
(
(−1)n

)
n≥1 w = 1

(c)
(

n
2n+1

)
n≥1

w = 0
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(d)
(

n
2n+1

)
n≥1

w = 1

(e)
(

n
2n+1

)
n≥1

w = 1/2

(f)
(

cos
(
πn
3

))
n≥1

w = 0

2.6. Find a sequence of real numbers (xn) converging to 1 such that
infinitely many terms are greater than 1 and infinitely many terms are
less than 1.

2.7. Find a sequence of complex numbers (zn), none of which are real,
that converges to 2.

2.8. Give an example of two divergent sequences (zn) and (wn) such
that the product sequence (znwn) converges.

2.9. Give an example of a divergent sequence (zn) and a convergent
sequence (wn) such that the product sequence (znwn) converges. What
is the limit of (wn) in your example? Is it possible to find an example
with a different limit? If so, provide such an example; if not, explain
why no other limit for (wn) is possible.

2.10. Use Propositions 2.20 and 2.30 to find the limit or explain why
the sequence diverges.

(a)
(

cos
(
2
n

))
(b)

(
3n3−n

2n3+2n+1

)
(c)

(
3−4n
2+3·4n

)
(d)

(
arctan

(
1
n2

))
(e)

(
ln(n+1)
ln(n2)

)
(f)
((

1 + 2
n

)n)
(g)

(
4n+2

5n

)
(h)

(
in

(0.5)n+1

)
(i) (ln(n+ 1)− ln(n))

(j)
(√

n2+1
2n2−1

)

2.11. (The Squeeze Theorem) Suppose that (an), (bn), and (cn) are
real sequences satisfying an ≤ bn ≤ cn for all n. Also suppose that
limn→∞ an = limn→∞ cn = L. Prove that limn→∞ bn = L by complet-
ing the following steps. Let d > 0 be given.

(a) Show that there exists N1 > 0 such that −d < an−L for all n ≥ N1.
(b) Show that there exists N2 > 0 such that cn−L < d for all n ≥ N2.
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(c) Finally, show that there exists N > 0 such that |bn − L| < d for all
n ≥ N .

2.12. Use the Squeeze Theorem (Problem 2.11) to find the limits of
the following sequences:

(a)
(

cos(n)
n

)
(b)

(
4n2+cos(2n)

n2+1

)
(c)

(
2

1
n

)
[Hint: use the binomial expansion from Example 2.8 to

show that 2 ≤ (1 + 1
n
)n for all n]

(d)
(

(1 + n
n+1

)
1
n

)
[Hint: use part (c)]

2.13. Determine whether the following sequences are bounded, mono-
tone, both or neither.

(a)
(
n+ 1

n

)
(b)

(
ne−n

)
(c)

(
n
n+1

)
(d)

(
(−1)n
2n+3

)
2.14. Consider the recursive sequence defined by:

a1 =
√

2 and an =
√

2an−1 for n ≥ 2.

(a) Write out the first 4 terms of the sequence.
(b) Show that a1 ≤ a2.
(c) Use induction to show that the sequence (an) is increasing.
(d) Show that a1 ≤ 2.
(e) Use induction to show that the sequence (an) is bounded by 2.
(f) Find the limit of (an).

2.15. Consider the recursive sequence defined by:

a1 =
√

2 and an =
√

2 + an−1 for n ≥ 2.

(a) Write out the first 4 terms of the sequence.
(b) Show that a1 ≤ a2.
(c) Use induction to show that the sequence (an) is increasing.
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(d) Show that a1 ≤ 2.
(e) Use induction to show that the sequence (an) is bounded by 2.
(f) Find the limit of (an).

2.16. Consider the recursive sequence defined by:

a1 = 1 and an = 3− 1

an−1
for n ≥ 2.

(a) Write out the first 4 terms of the sequence.
(b) Show that a1 ≤ a2.
(c) Use induction to show that the sequence (an) is increasing.
(d) Show that a1 ≤ 3.
(e) Use induction to show that the sequence (an) is bounded by 3.
(f) Find the limit of (an).

2.17. Let (zn) be a sequence of complex numbers that converges to 0.
Let (cn) be a bounded sequence of complex numbers. Show that (cnzn)

converges to 0.

2.18. This problem leads you to a combinatorial interpretation of
the binomial coefficients

(
n
k

)
. Consider the set containing the first n

positive integers:
{1, 2, 3, · · · , n}.

For each integer k with 0 ≤ k ≤ n, let b(n, k) denote the number
of subsets of this set containing exactly k numbers; the order of the
numbers does not matter, only which ones are present in the subset.
For example, taking n = 3, we are looking at the subsets of {1, 2, 3}:

k = 0 : { } = empty set b(3, 0) = 1

k = 1 : {1}, {2}, {3} b(3, 1) = 3

k = 2 : {1, 2}, {1, 3}, {2, 3} b(3, 2) = 3

k = 3 : {1, 2, 3} b(3, 3) = 1

Note that b(n, k) is the number of ways of choosing k elements from a
set with n elements.
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(a) Carefully explain why the number b(3, k) appears as the coefficient
of zk in the expansion of the polynomial

(1 + z)3 = (1 + z)(1 + z)(1 + z).

Hint: identify the first, second, and third linear factor written
above with the numbers 1, 2, 3 and think about the definition of
b(3, k) as you expand the product.

(b) Now explain why, for every n ≥ 1, the number b(n, k) appears as
the coefficient of zk in the expansion of the polynomial

(1 + z)n = (1 + z)(1 + z) · · · (1 + z).

You have now shown that b(n, k) =
(
n
k

)
, which explains the name “n

choose k” for the binomial coefficients.

2.19. Let D be the open disc of radius d > 0 centered at a complex
number w:

D = {z in C : |z − w| < d}.
Fix a point a in the disc D, and consider the open disc D′ of radius
d′ = d− |a− w| > 0 centered at a:

D′ = {z in C : |z − a| < d′}.

Draw a nice picture illustrating this situation. Then use the triangle
inequality (Proposition 1.7) to show that D′ is entirely contained inside
the original disc D.

2.20. Consider the sequence (xn) with nth term xn =
(
1 + 1

n

)n. Use a
web browser to navigate to SageMathCell, located at

https://sagecell.sagemath.org

Copy and paste the Python code provided below into the window, being
careful to fix any indentation problems that may arise in the process.
Now click Evaluate. This code prints the first N = 10 terms of the
sequence (xn). By changing the value of N , you can investigate the
behavior of the sequence. Based on your investigations, do you think
that (xn) converges? If so, do you have a guess for the limit?

https://sagecell.sagemath.org
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N = 10
for n in range(1, N+1):

x = (1+1/n)**n
print("x_{:d} = ".format(n) + str(x.n()))

2.21. Adapt the proof from Example 2.48 to show that the sequence
from Exercise 2.6 converges to

√
r:

x0 = 1 and xn =
1

2

(
xn−1 +

r

xn−1

)
for n ≥ 1.

2.22. Fix a positive real number r > 0. Consider the recursively
defined sequence (yn):

y0 = 1 and yn =
1

3

(
2yn−1 +

r

y2n−1

)
for n ≥ 1.

Use a web browser to navigate to SageMathCell, located at

https://sagecell.sagemath.org

Copy and paste the Python code provided below into the window, being
careful to fix any indentation problems that may arise in the process.
Now click Evaluate. This code prints the first N = 10 terms of the
sequence (yn) for r = 2. By changing the values of r and N , you can
investigate the behavior of these sequences. Based on your investiga-
tions, do you think that (yn) always converges? If so, do you have a
guess for the limit?

r = 2
N = 10
y = 1.0
print("y_0 = " + str(y))
for n in range(1, N):

y = (1/3)*(2*y + r/(y**2))
print("y_{:d} = ".format(n) + str(y))

https://sagecell.sagemath.org




CHAPTER 3

SERIES

3.1. Inspiration: The Riemann Zeta Function

By way of motivation for this chapter, we now introduce one of
the most interesting complex functions in all of mathematics: the Rie-
mann zeta function, ζ(z). Figure 3.1 shows the graph of the magni-
tude |ζ(z)| on the domain Re(z) > 1. This fascinating function arises
in the subject of number theory and has applications to other areas
of mathematics and physics. The Riemann Hypothesis, formulated by
the German mathematician Bernhard Riemann in 1859, concerns the
location of the zeros of the zeta function and has profound implica-
tions for the distribution of prime numbers among all the integers. In
2000, the Clay Mathematics Institute listed the Riemann Hypothesis
as one of its seven Millennium Prize Problems, each of which carries
a one million dollar prize. The Riemann Hypothesis is still open, so
pay attention: the ideas in this chapter could set you on the path to a
lucrative reward.

Our reason for introducing the zeta function is because its definition
requires the notion of infinite series, the central topic of this chapter.

111
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Figure 3.1. Graph of the magnitude of the Riemann
zeta function |ζ(z)|. Note that the axes are rotated from
the usual representation, with the imaginary y-axis run-
ning horizontally across the page.

Here is the defining formula:

ζ(z) = 1 +
1

2z
+

1

3z
+

1

4z
+ · · · .

Right away, there are at least two things about this formula that need
discussion:

(1) The variable z is complex, so we seem to be contemplating
complex number exponents. But what does 2z mean? We
will return to this question in the optional Section 4.10, as
an application of the complex exponential function studied in
Section 4.7. (Recall that we encountered a complex extension
of the real exponential function ex in Example 1.20.) For now,
we will restrict attention to real number exponents p, for which
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the zeta function has the formula

ζ(p) = 1 +
1

2p
+

1

3p
+

1

4p
+ · · · .

Here, we are thinking of p as a real variable, so we will want
to investigate these expressions for various specific values of p,
for instance p = 2 and p = π:

ζ(2) = 1 +
1

22
+

1

32
+

1

42
+ · · ·

ζ(π) = 1 +
1

2π
+

1

3π
+

1

4π
+ · · · .

(2) The dots “· · · ” indicate that the sum goes on forever. So we
need to make sense of the activity of adding up an infinite
sequence of numbers. In this case, the infinite sequence is
(1/np) = (1, 1/2p, 1/3p, 1/4p, . . . ), but we may investigate this
notion of “infinite summation” for any sequence of complex
numbers (cn).

3.2. Series and Convergence

Suppose that (cn) is a sequence of complex numbers. We want to
make sense of “adding up all of the numbers cn.” Your initial reaction to
this idea may be that the process will never end, or if it does somehow
come to an end, then the result must be infinite or nonsensical. After
all, if there are really infinitely many terms cn, then there are always
more terms to add. This conundrum should remind you of the improper
integrals you studied in MATH 155, where you discovered that some
regions having infinite extent actually have only finite area (we will
return to improper integrals in Section 3.3).

Luckily, our notion of convergence saves the day. Instead of pre-
judging the outcome of “infinite summation,” we proceed slowly and
investigate what happens as we add one additional term at a time to
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obtain the sequence of finite partial sums (sm):

s1 = c1

s2 = c1 + c2

s3 = c1 + c2 + c3
...

sm = c1 + c2 + c3 + · · ·+ cm
...

Having done this, it makes sense to ask whether the sequence (sm)

converges or not. If it does converge to a finite limit s, then we should
think of s as the sum of all of the numbers cn, because the partial
sums sm get arbitrarily close to s as we include more and more of the
terms cn. On the other hand, if the sequence (sm) does not converge,
then we should conclude that it is not possible to add up all of the
terms cn, there being no single finite value that the partial sums sm are
approaching.

We record these ideas in the following definition.

Definition 3.1. Let (cn)n≥1 be a sequence of complex numbers.
Define a new sequence of complex numbers (sm)m≥1, the sequence of
partial sums, as follows:

sm = c1 + c2 + c3 + · · ·+ cm =
m∑
n=1

cn.

In words, for each indexm ≥ 1, themth partial sum sm is the finite sum
of the firstm terms of the sequence (cn). If the sequence of partial sums
(sm) converges to a limit s, then we say that the series c1+c2+c3+ · · ·
converges to the sum s, and we write

∞∑
n=1

cn = c1 + c2 + c3 + · · · = lim
m→∞

sm = s.

If the sequence of partial sums (sm) does not converge, then we say
that the series

∑∞
n=1 cn diverges.
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Remark 3.2. If the original sequence (cn)n≥0 starts with the in-
dex 0 or some other integer, then the indices of the sequence of partial
sums (sm)m≥0 are adjusted accordingly:

s0 = c0

s1 = c0 + c1
...

sm = c0 + c1 + · · ·+ cm =
m∑
n=0

cn.

In this case, we write
∑∞

n=0 cn = limm→∞ sm when the series converges.

The best way to come to grips with this definition is to start work-
ing with examples. At the end of this section (Remark 3.14), we pro-
vide some general comments about common sources of mistakes when
working with series; those comments are probably best appreciated
after having made some of the mistakes for yourself.

Example 3.3. Consider the sequence (cn) =
(

1
n(n+1)

)
:

c1 =
1

1 · 2 =
1

2
, c2 =

1

2 · 3 =
1

6
, c3 =

1

3 · 4 =
1

12
, . . . .

We wish to investigate the series
∞∑
n=1

1

n(n+ 1)
=

1

2
+

1

6
+

1

12
+ · · · .

Does it converge or diverge, and if it does converge, can we name the
sum explicitly? Let’s begin by looking numerically (to 6 decimal places
of precision) at the sequence of partial sums:

s1 = 0.500000

s2 ≈ 0.666667

s3 = 0.750000

s4 = 0.800000

s5 ≈ 0.833333

...

s1000 ≈ 0.999001

s1001 ≈ 0.999002

s1002 ≈ 0.999003

s1003 ≈ 0.999004

s1004 ≈ 0.999005
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Could it be that these partial sums are converging to 1? Yes, and
if we use a bit of algebra, we can prove it. Note that we can rewrite
the numbers cn as follows:

cn =
1

n(n+ 1)
=

1

n
− 1

n+ 1
.

This allows us to compute the partial sums exactly:

sm = c1 + c2 + c3 + · · ·+ cm

=

(
1−

�
�
�1

2

)
+

(
�
�
�1

2
−

�
�
�1

3

)
+

(
�
�
�1

3
−

�
�
�1

4

)
+ · · ·+

(
�
�
�1

m
− 1

m+ 1

)
= 1− 1

m+ 1
.

Note the fortuitous cancelation in the second line, in which the negative
term in each parenthesis is canceled by the positive term in the next
parenthesis. Because of this phenomenon, series like this one are called
telescoping, a name derived from the fact that some telescopes are made
of segments that slide inside of each other to make the instrument short
when not in use.

Because of the telescoping behavior, we have found a simple formula
for the mth partial sum of the series:

sm = 1− 1

m+ 1
.

Moreover, since the harmonic sequence (1/(m+ 1)) converges to zero,
an application of Proposition 2.20(b) shows that

lim
m→∞

sm = lim
m→∞

(
1− 1

m+ 1

)
= 1− lim

m→∞

1

m+ 1
= 1.

Hence, we are justified in saying that the series converges to 1, and
writing

∞∑
n=1

1

n(n+ 1)
= 1.

Remark 3.4. Be careful with the words sequence and series : the
symbol

∑∞
n=1 cn denotes a series. This series has two important se-

quences associated with it: the sequence of terms (cn) that we are
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attempting to sum, and the sequence of partial sums (sm). Note in par-
ticular that limn→∞ cn denotes the limit of the sequence of terms (cn),
which is quite different from the infinite series

∑∞
n=1 cn = limm→∞ sm.

For instance, in the previous example of the series
∑∞

n=1
1

n(n+1)
, the

sequence of terms is (cn) =
(

1
n(n+1)

)
and the sequence of partial sums

is (sm) = (1− 1
m+1

). So we have

lim
n→∞

cn = lim
n→∞

1

n(n+ 1)
= 0,

while
∞∑
n=1

cn =
∞∑
n=1

1

n(n+ 1)
= lim

m→∞
sm = lim

m→∞

(
1− 1

m+ 1

)
= 1.

Example 3.5. Consider the constant sequence (cn) = (1 + i)n≥1,
and let’s investigate the series

∑∞
n=1(1 + i). As always, we begin by

looking at the partial sums:

sm = (1 + i) + (1 + i) + · · ·+ (1 + i) = m+mi.

The sequence (sm) is not bounded, because

|sm| = |m+mi| =
√
m2 +m2 = m

√
2.

By Proposition 2.18, the sequence of partial sums (sm) does not con-
verge, so the series

∑∞
n=1(1+ i) diverges. In this case, the divergence of

the series is due to the sequence of partial sums (sm) being unbounded.

Example 3.6. Consider the alternating sequence

(cn) = ((−1)n+1)n≥1 = (1,−1, 1,−1, 1,−1, . . . ).

We wish to investigate the series

1− 1 + 1− 1 + 1− 1 + · · · =
∞∑
n=1

(−1)n+1.
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We look at the partial sums:

s1 = 1

s2 = 1− 1 = 0

s3 = 1− 1 + 1 = 1

s4 = 1− 1 + 1− 1 = 0
...

We see that the partial sums form the sequence (sm) = (1, 0, 1, 0, 1, 0, . . . ).
This sequence does not converge, so the series

∑∞
n=1(−1)n+1 diverges.

Note that this type of divergence is a bit different from the previous
example, where the partial sums formed an unbounded sequence. In
this case, even though the sequence of partial sums (sm) is bounded, it
does not settle down (converge) to a single value, and hence the series
diverges.

Exercise 3.1. What is wrong with the following telescoping argu-
ment that purports to show that the series sums to 0?

∞∑
n=1

(−1)n+1 = 1− 1 + 1− 1 + 1− 1 + · · ·

= (1− 1) + (1− 1) + (1− 1) + · · ·
= 0 + 0 + 0 + · · ·
= 0.

Can you make a similar (invalid) argument that suggests that the series
sums to 1?

The previous two examples of divergent series are perhaps not too
surprising in hindsight: in both cases the terms cn do not get arbitrarily
small as the index n gets bigger and bigger. But the terms cn are exactly
the changes in the partial sums:

sm = c1 + c2 + · · ·+ cm−1 + cm = sm−1 + cm.
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So the fact that the numbers cm do not approach zero means that the
terms sm continue to change substantially as m gets bigger and bigger,
and this means that the sequence (sm) cannot converge. The next
result makes these observations precise.

Proposition 3.7 (Divergence Test). Suppose that the series
∑∞

n=1 cn

converges to the sum s. Then the sequence of terms (cn) converges to
zero.

Proof. We are assuming that
∑∞

n=1 cn = s. But this just means
that the sequence of partial sums (sm) converges to s:

lim
m→∞

sm = s.

Observe that we can also write limm→∞ sm−1 = s. Indeed, the se-
quence (sm−1) is the same list of numbers in the same order, only with
the indices shifted by 1.

But, as explained just above, we have (cm) = (sm − sm−1), so an
application of Proposition 2.20(b) shows that

lim
m→∞

cm = lim
m→∞

(sm − sm−1) = s− s = 0,

so the sequence of terms (cm) converges to zero as claimed. �

Remark 3.8. The previous proposition goes by the name of the
divergence test, because it is most often used to show that a series is
divergent. We explain this in two steps:

(1) The statement of the proposition (which mentions only con-
vergence) is logically equivalent to a statement that mentions
only divergence:
∞∑
n=1

cn converges implies lim
n→∞

cn = 0

is logically equivalent to

lim
n→∞

cn 6= 0 implies
∞∑
n=1

cn diverges.
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(2) We put this reformulation to work in the following way: given a
series

∑∞
n=1 cn, it is a good idea to first investigate the sequence

of terms (cn). If we find that (cn) does not converge or that
the limit exists but is different from zero, we can immediately
conclude that the series diverges. If, on the other hand, we find
that limn→∞ cn = 0, then we must move on to an investigation
of the sequence of partial sums (sm) to determine if the series
converges or diverges.

Remember: the divergence test can only demonstrate divergence, never
convergence. It may be helpful to think of it this way: there is no
hope for a series

∑∞
n=1 cn to converge unless the sequence of terms (cn)

converges to zero; but just because the sequence (cn) converges to zero
does not in itself guarantee that the series converges. We will see some
examples of this in the next section.

Example 3.9. (Divergent p-series) Consider the sequence

(cn) =

(
1

n−
1
2

)
= (
√
n).

This sequence is unbounded, and so in particular limn→∞ cn 6= 0. The
series

∑∞
n=1

√
n diverges by the divergence test.

More generally, consider the p-sequence (1/np). For p < 0, the
sequence is unbounded (Example 2.34), while for p = 0 the sequence
(1/n0) = (1)n≥1 is a nonzero constant. By the divergence test, the
p-series

∑∞
n=1 1/np diverges whenever the exponent p ≤ 0.

Note that for p > 0, the p-sequence (1/np) converges to zero,
and the divergence test cannot help us: the corresponding p-series∑∞

n=1 1/np may or may not converge, and we will use other methods
to determine the truth in Proposition 3.18 of the next section.

Example 3.10 (Geometric Series). Consider the geometric sequence
with first term a = 2 and common ratio c = 3i:

(acn)n≥0 = (2 · (3i)n)n≥0 = (2, 6i, −18, −54i, 162, . . . ).
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This sequence is unbounded, because the magnitude of the common
ratio |c| = |3i| = 3 > 1. Hence the geometric series

∑∞
n=0 2 · (3i)n

diverges by the divergence test.
More generally, fix two complex numbers a 6= 0 and c, and consider

the geometric sequence (acn)n≥0. As noted above, this sequence is
unbounded if |c| > 1 by Example 2.35:

lim
n→∞

|acn| = lim
n→∞

|a||c|n = |a| lim
n→∞

|c|n = +∞.

If |c| = 1, then the sequence (acn) lies on the circle of radius |a| 6= 0, and
hence does not converge to zero. By the divergence test, the geometric
series

∑∞
n=0 ac

n diverges whenever |c| ≥ 1.
Now assume that |c| < 1, so the sequence (|c|n) converges to zero,

which implies that the sequence (acn) also converges to zero:

lim
n→∞

acn = a lim
n→∞

cn = a · 0 = 0.

Remember: the divergence test now only tells us that it is possible for
the series

∑∞
n=0 ac

n to converge, but cannot help us further to actually
establish the convergence. For that, we will need to take a different
approach, beginning with the following telescoping computation with
polynomials:

(1− z)(1 + z + z2 + · · ·+ zm) = 1 + �z +��z
2 + · · ·+��zm

−�z −��z
2 − · · · −��zm − zm+1

= 1− zm+1.

Dividing by 1− z reveals an important algebraic identity:

1 + z + z2 + · · ·+ zm =
1− zm+1

1− z .

This is an identity of complex functions, which means that the equality
continues to hold after plugging in any complex number c 6= 1 (so as
to avoid a zero in the denominator on the right hand side):

1 + c+ c2 + · · ·+ cm =
1− cm+1

1− c .
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In particular, we can use this result to express each of the partial sums
sm of our geometric series in a compact form:

sm = a(1 + c+ c2 + · · ·+ cm) =
a(1− cm+1)

1− c .

Recall that, since |c| < 1, we have limn→∞ c
n = 0. Now we take the

limit of the partial sums to find that the series converges:
∞∑
n=0

acn = lim
m→∞

sm = lim
m→∞

a(1− cm+1)

1− c =
a

1− c.

As a concrete example of a convergent geometric series, take a = 1

and c = i
2
. Then we have

∞∑
n=0

(
i

2

)n
=

1

1− i
2

=
2

2− i =
2

5
(2 + i) .

Figure 3.2 shows both the sequence of terms ((i/2)n) and the sequence
of partial sums (sm) =

(∑m
n=0(i/2)n

)
.

We now prove three important limit laws for series. In fact, these
results are immediate consequences of the corresponding facts for se-
quences. (Proposition 2.20).

Proposition 3.11 (Limit Laws for Series). Suppose that the series∑∞
n=1 cn converges to the sum s and the series

∑∞
n=1 dn converges to

the sum t. That is, we have
∞∑
n=1

cn = s and
∞∑
n=1

dn = t.

Then

(a)
∞∑
n=1

(cn + dn) =
∞∑
n=1

cn +
∞∑
n=1

dn = s+ t;

(b)
∞∑
n=1

(cn − dn) =
∞∑
n=1

cn −
∞∑
n=1

dn = s− t;
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Figure 3.2. The sequence of terms and the sequence of
partial sums for the geometric series

∑∞
n=0(i/2)n. The

first 15 terms of the sequence ((i/2)n) are displayed as
round dots; the first 15 terms of the sequence of partial
sums (sm) are displayed as squares.

(c) if a is any complex number, then
∞∑
n=1

acn = a
∞∑
n=1

cn = as.

Proof. We will prove part (a) and leave the other parts as ex-
ercises. Let (sm) denote the sequence of partial sums of the series∑∞

n=1 cn, and (tm) the sequence of partial sums of
∑∞

n=1 dn. Then we
are assuming that (sm) converges to s and (tm) converges to t. But
consider the sequence of partial sums (wm) of the series

∑∞
n=1(cn+dn):

wm = (c1 + d1) + (c2 + d2) + · · ·+ (cm + dm)

= (c1 + c2 + · · ·+ cm) + (d1 + d2 + · · ·+ dm)

= sm + tm.
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It follows by Proposition 2.20(a) that

lim
m→∞

wm = lim
m→∞

(sm + tm) = s+ t.

This means that the series
∑∞

n=1(cn+dn) converges to s+ t as claimed.
�

Exercise 3.2. Prove parts (b) and (c) of Proposition 3.11.

We now state a series analogue of Proposition 2.25 that relates the
convergence of a complex sequence to the convergence of its real and
imaginary parts.

Proposition 3.12. Suppose that
∑∞

n=1 cn is a complex series, with
(cn) = (an + bni). Consider the corresponding series of real and imag-
inary parts

∑∞
n=1 an and

∑∞
n=1 bn. Then

∞∑
n=1

cn = s if and only if
∞∑
n=1

an = Re(s) and
∞∑
n=1

bn = Im(s).

Proof. Exercise 3.3 �

Exercise 3.3. Use Proposition 2.25 to prove Proposition 3.12.

Example 3.13. Here is an example of using Proposition 3.12. Con-
sider the series

∞∑
n=0

(
1

2n
+

i

3n

)
.

Here, the nth term of the sequence is cn = 1
2n

+ i
3n

= an + bni with
real part an = 1

2n
and imaginary part bn = 1

3n
. The corresponding real

series are convergent geometric:
∞∑
n=0

an =
∞∑
n=0

1

2n
=

1

1− 1
2

= 2

and
∞∑
n=0

bn =
∞∑
n=0

1

3n
=

1

1− 1
3

=
3

2
.
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By Proposition 3.12, it follows that
∑∞

n=0 cn is convergent, with
∞∑
n=0

cn =
∞∑
n=0

(
1

2n
+

i

3n

)
=
∞∑
n=0

1

2n
+ i

∞∑
n=0

1

3n
= 2 +

3

2
i.

Note that the series
∑∞

n=0 cn is not itself a geometric series, although its
real part

∑∞
n=0 an and its imaginary part

∑∞
n=0 bn are both geometric

series.

Remark 3.14. Here are some common sources of mistakes for stu-
dents beginning to study infinite series:

(a) (Notation) The finite summation symbol
∑m

n=1 cn is simply short-
hand for the finite sum c1+c2+ · · ·+cm. This straightforward alge-
braic procedure always leads to a finite answer, and the usual laws
of algebra always apply. The infinite summation symbol

∑∞
n=1 cn is

chosen to look a lot like the finite symbol, but its interpretation is
more subtle. We encourage you to think of the symbol

∑∞
n=1 cn not

as a straightforward algebraic operation, but rather as shorthand
for the investigative procedure involving the sequence of partial
sums (sm) described in Definition 3.1. Depending on the outcome
of that procedure, it may be that the symbol comes to denote a
specific complex number s = limm→∞ sm (this happens when the
series converges), or it may be that the symbol comes to represent
a type of nonexistence (when the series diverges, so there is no sum).

(b) (Language) We repeat here the content of Remark 3.4: be very
careful in your use of the words sequence and series : the sym-
bol

∑∞
n=1 cn denotes a series. This series has two important se-

quences associated with it: the sequence of terms (cn) that we
are attempting to sum, and the sequence of partial sums (sm).
Note in particular that limn→∞ cn denotes the limit of the se-
quence of terms (cn), which is quite different from the infinite series∑∞

n=1 cn = limn→∞ sn. See Figure 3.2 for a visual illustration of the
distinction, and be sure not to confuse these two different limits.
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(c) (Algebra) You should use caution when making algebraic manipu-
lations with series, because not all of the familiar rules apply. For
instance, in the optional Section 3.8, we explain how adding up the
terms of a series in a different order can change the sum! To be
safe, when working with infinite series you should carefully apply
the limit laws (Proposition 3.11) or else manipulate the finite par-
tial sums and then draw conclusions about the infinite sum. Refer
back to Example 3.6 and Exercise 3.1 for instances of these types
of mistakes.

Key points for Section 3.2:

• Definition of sequence of partial sums, series, conver-
gence and divergence (Definition 3.1)
• Divergence Test (Proposition 3.7)
• Geometric series, convergence and divergence (Exam-
ple 3.10)
• Limit laws for series (Proposition 3.11)

3.3. p-Series and the Integral Test (R)

This section takes place entirely in the context of the real numbers R.
In Example 3.9 of the previous section, we used the divergence test

to show that the p-series
∑∞

n=1
1
np diverges for p ≤ 0. We now wish

to investigate the convergence or divergence of p-series for p > 0. The
divergence test provides no help, because limn→∞ 1/np = 0 for p > 0.
In order to develop some intuition, we begin by looking numerically
at some specific examples. The actual proofs of convergence or diver-
gence will come later in this section, after we develop the appropriate
theoretical tool for the job.

Example 3.15. Consider the exponent p = 2 and corresponding
p-series

∑∞
n=1 1/n2. Denoting the sequence of partial sums by (sm) as

usual, we have (to 6 decimal places of precision)
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s991 ≈ 1.643925

s992 ≈ 1.643927

s993 ≈ 1.643928

s994 ≈ 1.643929

s995 ≈ 1.643930

s996 ≈ 1.643931

s997 ≈ 1.643932

s998 ≈ 1.643933

s999 ≈ 1.643934

s1000 ≈ 1.643935

These computations suggest that the series
∑∞

n=1 1/n2 converges to a
sum s ≈ 1.64.

Example 3.16. Now consider the exponent p = 1
2
and the p-series∑∞

n=1 1/n1/2 =
∑∞

n=1 1/
√
n. Here are some terms of the sequence of

partial sums (sm):

s991 ≈ 61.52

s992 ≈ 61.55

s993 ≈ 61.58

s994 ≈ 61.61

s995 ≈ 61.64

s996 ≈ 61.67

s997 ≈ 61.71

s998 ≈ 61.74

s999 ≈ 61.77

s1000 ≈ 61.80

It is hard to know what to think at this point, so we compute some
later terms of the sequence of partial sums:

s9991 ≈ 198.45

s9992 ≈ 198.46

s9993 ≈ 198.47

s9994 ≈ 198.48

s9995 ≈ 198.49

s9996 ≈ 198.50

s9997 ≈ 198.51

s9998 ≈ 198.52

s9999 ≈ 198.53

s10000 ≈ 198.54
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It appears that the sequence (sm) may be unbounded, and thus that
the series

∑∞
n=1 1/

√
n may be divergent. As one further piece of evi-

dence in that direction, the millionth partial sum of this series has the
approximate value s1000000 ≈ 1998.54.

Example 3.17. As a final numerical example, consider the expo-
nent p = 1, and the corresponding harmonic series

∑∞
n=1 1/n. Denot-

ing the sequence of partial sums of this series by (hm), we have

h990 ≈ 7.475

h991 ≈ 7.476

h992 ≈ 7.477

h993 ≈ 7.478

h994 ≈ 7.479

h995 ≈ 7.480

h996 ≈ 7.481

h997 ≈ 7.482

h998 ≈ 7.483

h999 ≈ 7.484

In fact, you have already considered the sequence (hm) in Exercise
2.5 of Section 2.3, where we introduced it recursively as

h1 = 1 and hm = hm−1 +
1

m
for m ≥ 2.

In that exercise, we asked you to investigate the sequence numerically
and make a guess as to whether it is bounded or unbounded. Do you
remember your answer? It is likely that you guessed the sequence to be
bounded. After all, the millionth partial sum is only h1000000 ≈ 14.393.

Actually, the sequence (hm) is unbounded, so the harmonic series∑∞
n=1 1/n diverges. This is an astounding fact: even though the mil-

lionth partial sum is smaller than 15, the partial sums hm eventually
get arbitrarily large. This important example highlights the difficulty
of using numerical methods to reliably investigate the convergence of
series. To get definitive results, we need some additional theory as
developed in the remainder of this chapter.



3.3. p-SERIES AND THE INTEGRAL TEST (R) 129

The next proposition says that the value p = 1 is a sort of dividing
line between divergent and convergent p-series, as the recent examples
have suggested.

Proposition 3.18 (p-series). The convergence / divergence behav-
ior of p-series

∑∞
n=1 1/np may be summarized as follows:

(a) if p > 1, then
∑∞

n=1 1/np converges;
(b) if p ≤ 1, then

∑∞
n=1 1/np diverges.

We postpone the proof until after we have developed a theoretical
tool called the integral test. The basic idea will be to compare the p-
series

∑∞
n=1 1/np with the improper integral

∫∞
1

1
xp
dx, so we begin by

briefly reviewing the idea of improper integration from MATH 155.
Suppose that f : (0,∞)→ R is a real function defined on the posi-

tive real axis. Because it is the case that will be important for us, we
assume that the function f is nonnegative, so that its graph lies entirely
above the x-axis. We also assume that the function f is continuous,
so that its integral over any finite interval [a, b] exists. But we would
like to compute the area under the graph of f over the infinite interval
[1,∞). This is a region of infinite extent, so you might initially guess
that its area must also be infinite. But in fact the area is sometimes
finite, as revealed by the following procedure: fix (for the moment) a
large upper bound t > 0, and consider the finite integral

A(t) =

∫ t

1

f(x)dx.

The function A(t) gives the area under f over the interval [1, t], as
shown in Figure 3.3.
Now take the limit of A(t) as t→∞, and define the improper integral∫ ∞

1

f(x)dx = lim
t→∞

A(t).

If limt→∞A(t) = A is finite, then we say that the improper integral
converges. On the other hand, if limt→∞A(t) = +∞, then we say that
the improper integral diverges.
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Figure 3.3. The finite areas A(t) account for more and
more of the total area under the graph of f(x) as t→∞.

The justification for this procedural definition is similar to the justi-
fication for infinite series given on page 113: if the areas A(t) approach
a finite limit A as t gets large, it makes sense to think of A as the total
area of the infinite region, since the intervals [1, t] account for more and
more of the interval [1,∞) as t gets large. On the other hand, since
the total area must always be somewhat greater than any particular
area A(t), if the areas A(t) run off to +∞, we should conclude that the
total area is also infinite.

As discussed at the end of Section 2.5, many real sequences (an)

arise from real functions f(x) by setting an = f(n). For instance, the
p-sequence (an) = (1/np) is related to the function f(x) = 1/xp in
this way. We now state a result known as the integral test, because
it uses improper integrals to provide a criterion for the convergence
or divergence of some real series

∑∞
n=1 an arising from nonnegative

continuous functions f(x).
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Proposition 3.19 (The Integral Test). Suppose that f(x) is a con-
tinuous, nonnegative, and decreasing function defined on the positive
x-axis, and consider the associated sequence (an) = (f(n)). Then:

(a) the series
∑∞

n=1 an converges if the improper integral
∫∞
1
f(x)dx

converges;
(b) the series

∑∞
n=1 an diverges if the improper integral

∫∞
1
f(x)dx di-

verges.

Remark 3.20. Be careful to check the hypotheses carefully when
using the integral test: the real function f : (0,∞) → R must sat-
isfy all three of the stated conditions: continuous, nonnegative, and
decreasing.

Exercise 3.4. After reading the proof of the integral test, write a
paragraph explaining where each of the hypotheses on the function f
are used in the proof: (1) continuous, (2) nonnegative, (3) decreasing.

Proof. We have two things to prove: (a) If the improper integral
converges, then so does the series; (b) if the improper integral diverges,
then so does the series. We begin with (a).

Assume that the improper integral converges to a finite area A, so∫∞
1
f(x)dx = A < +∞. We wish to show that the sequence of partial

sums (sm) of the series
∑∞

n=1 an converges. For this we will use the
monotone convergence theorem (Theorem 2.43), so we need to show
that the sequence (sm) is increasing and bounded. Increasing follows
from the fact that the terms an = f(n) are nonnegative:

sm+1 = sm + am+1 ≥ sm.

Figure 3.4 shows that each partial sum sm is less than the upper bound
a1 + A. By the monotone convergence theorem, the sequence (sm)

converges.
For part (b), we start by assuming that the improper integral di-

verges, so that limt→∞A(t) = +∞. Figure 3.5 shows that the partial
sum sm > A(m+ 1). Since the numbers A(m+ 1) get arbitrarily large,
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Figure 3.4. The blue region under the graph of f is
the total area A, while the sum of the areas of the 7 red
rectangles is the partial sum s7. In general, for every
index m, we have sm < a1 + A.

it follows that the partial sums sm also get arbitrarily large. That is,
the sequence (sm) diverges to +∞. �

The problems at the end of the chapter ask you to use the inte-
gral test to determine the convergence / divergence of various series.
Our main concern is to determine the behavior of p-series, so we now
illustrate the use of the integral test by providing a proof of Proposi-
tion 3.18.

Proof of Proposition 3.18. First of all, note that we have al-
ready established (using the divergence test in Example 3.9), that∑∞

n=1 1/np diverges for p ≤ 0.
So we assume that the exponent p > 0; in this case the function

f(x) = 1/xp satisfies the hypotheses of the integral test: it is con-
tinuous, nonnegative, and decreasing. We begin by investigating the
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Figure 3.5. The blue region under the graph of f is
the finite area A(8), while the sum of the areas of the 7
red rectangles is the partial sum s7. In general, for every
index m, we have sm > A(m+ 1).

improper integral. First assume p 6= 1. Then∫ ∞
1

1

xp
dx = lim

t→∞

∫ t

1

1

xp
dx = lim

t→∞

x1−p

1− p

∣∣∣∣∣
t

1

= lim
t→∞

t1−p − 1

1− p =

{
+∞ 0 < p < 1

1
p−1 p > 1.

By the integral test, it follows that
∑∞

n=1 1/np diverges for p < 1 and
converges for p > 1

It remains to study the case p = 1, corresponding to the harmonic
series:∫ ∞

1

1

x
dx = lim

t→∞

∫ t

1

1

x
dx = lim

t→∞
ln(x)

∣∣∣∣t
1

= lim
t→∞

(ln(t)− ln(1)) = +∞.

Thus, the harmonic series
∑∞

n=1 1/n diverges. �
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The integral test only tells us whether the series converges, not
the value of the sum. However, it does provide bounds for the sum.
Figures 3.4 and 3.5 show that, in the case of convergence, we have

A ≤
∞∑
n=1

an ≤ a1 + A,

where A =
∫∞
n=1

f(x)dx is the finite value of the improper integral.

Example 3.21. Consider the p-series
∑∞

n=1 1/n2 studied earlier in
Example 3.15. Then a1 = 1 and

A =

∫ ∞
1

1

x2
dx = 1,

so we have

1 ≤
∞∑
n=1

1

n2
≤ 1 + 1 = 2,

which agrees with our earlier numerical estimate that
∑∞

n=1
1
n2 ≈ 1.64.

In the mid-18th century the Swiss mathematician Leonard Euler
proved the amazing result that the exact value for this sum is

∞∑
n=1

1

n2
=
π2

6
= 1.64493406684823 . . .

(This result goes by the name of the Basel problem). In fact, this is
just the first level of Euler’s discovery: for every even positive integer
p = 2k, there is an explicitly known rational number rk such that

∞∑
n=1

1

n2k
= rkπ

2k.

For instance:
∞∑
n=1

1

n4
=
π4

90
,

∞∑
n=1

1

n6
=

π6

945
, . . . ,

∞∑
n=1

1

n12
=

691π12

638512875
, . . .

Euler made his incredible discoveries while studying the real zeta
function ζ(p) introduced in Section 3.1:

ζ(p) = 1 +
1

2p
+

1

3p
+ · · · =

∞∑
n=1

1

np
.
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Figure 3.6. Graph of the real zeta function ζ(p). Even
zeta values are shown as blue dots, and ζ(3) is shown as
a red dot. This curve is what you would obtain by slicing
the plot of the magnitude |ζ(z)| shown in Figure 3.1 with
the vertical plane y = 0 lying above the real axis. The
vertical asymptote at p = 1 indicates the divergence of
the harmonic series.

We are now in a better position to appreciate this function. The defin-
ing formula on the right hand side is the p-series that we have been
studying in this section. But now we are thinking of the real exponent
p as a variable: as the value of p changes, so does the corresponding
sum of the p-series

∑∞
n=1 1/np, and we call the resulting function ζ(p).

The main result of this section (Proposition 3.18) says that the domain
of ζ(p) is the infinite interval (1,∞). Figure 3.6 shows the graph of the
real zeta function.

The fact that the so-called even zeta values ζ(2k) =
∑∞

n=1 1/n2k can
be explicitly written in terms of the familar constant π is amazing, and
most zeta values can’t be expressed in any such simple, finite form. For
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example, consider ζ(3) =
∑∞

n=1 1/n3. In this case the corresponding
improper integral yields

A =

∫ ∞
1

dx

x3
=

1

2
,

and so 0.5 ≤ ζ(3) ≤ 1.5, using the bounds coming from the integral
test. Of course, we can get a better idea of the value ζ(3) by computing
a partial sum, say for m = 100:

s100 =
100∑
n=1

1

n3
≈ 1.2020074.

But how do we know how accurate this partial sum is? Well, the error
is given by the sum of all the terms that we did not include in the
partial sum:

error = ζ(3)− s100 =
∞∑
n=1

1

n3
−

100∑
n=1

1

n3
=

∞∑
n=101

1

n3
,

so we would like to get an upper bound for the tail of the series, i.e. the
sum of all terms starting with the 101st. But a version of Figure 3.4
with m + 1 for the lower limit of integration instead of 1 would yield
the inequality:

∞∑
n=m+1

1

n3
≤ 1

(m+ 1)3
+

∫ ∞
m+1

dx

x3
=

1

(m+ 1)3
+

1

2(m+ 1)2
.

For the particular case m = 100, we find that (to 9 decimal places of
precision):

error =
∞∑

n=101

1

n3
≤ 1

1013
+

1

2 · 1012
≈ 0.000049985

It follows that the partial sum approximation s100 is correct to at least
4 decimal places:

ζ(3) ≈ 1.2020

The number ζ(3) is known as Apéry’s constant, after the French
mathematician Roger Apéry who in 1978 proved that ζ(3) is an ir-
rational number. Although it is known that there must be infinitely
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many other irrational odd zeta values ζ(2k + 1), no other particular
odd zeta value has yet been proven to be irrational.

Key points for Section 3.3:

• p-series convergence / divergence (Proposition 3.18)
• Integral Test (Proposition 3.19)

3.4. Comparison (R)

This section takes place entirely in the context of the real numbers R.

We have now established the convergence / divergence of two im-
portant families of series with positive terms:

• (p-series)
∞∑
n=1

1

np
=

{
ζ(p) p > 1

+∞ p ≤ 1

• (positive geometric series) for a, r > 0 fixed real numbers,
∞∑
n=0

arn =

{
a

1−r 0 < r < 1

+∞ r ≥ 1.

The next result allows us to determine the convergence / divergence
of other nonnegative series by comparing them to nonnegative series
that we already understand.

Proposition 3.22 (The Comparison Test). Suppose that
∑∞

n=1 an

and
∑∞

n=1 bn are two series with eventually nonnegative terms an and bn.
Furthermore, suppose that 0 ≤ an ≤ bn for eventually all indices n.
Then

(1) if
∑∞

n=1 bn converges, so does
∑∞

n=1 an

(2) if
∑∞

n=1 an diverges, so does
∑∞

n=1 bn.

Moreover, in the convergent case (1), if all terms are nonnegative and
satisfy 0 ≤ an ≤ bn, then we have

∑∞
n=1 an ≤

∑∞
n=1 bn.

Remark 3.23. The word eventually is shorthand for more precise
statements:
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(a) A sequence (an) is eventually nonnegative if there exists an index N
such that an ≥ 0 for all n ≥ N ;

(b) the inequalities 0 ≤ an ≤ bn hold for eventually all n if there exists
an index N such that 0 ≤ an ≤ bn for all n ≥ N .

We will often use the word eventually to simplify the formulation of
statements in this way. The point is that removing finitely many terms
from a sequence (an) cannot affect whether or not the series

∑∞
n=0 an

converges (although it does change the value of the sum). Thus, many
hypotheses for convergence tests are stated as eventual properties of
the terms an.

Remark 3.24. Parts (1) and (2) are are logically equivalent. In-
deed, (1) has the form [B implies A] where B is the assertion that∑∞

n=1 bn converges and A is the assertion that
∑∞

n=1 an converges. In
these terms, (2) is the statement [not A implies not B] which is the
contrapositive of [B implies A]. And as a matter of logic, statements
and their contrapositives are equivalent.

Explicitly, if [B implies A] is true and [not A] is also true, then it
is impossible for B to be true, for then both A and [not A] would be
true, a contradiction. Hence the statement [B implies A] entails its
contrapositive [not A implies not B]. The same argument shows that
the statement [not A implies not B] entails [B implies A].

Proof. By the previous remark, we only need to prove part (1),
the convergent case. Moreover, since the question of series convergence
or divergence depends only on the eventual behavior of the terms, we
may assume that all terms are nonnegative and that 0 ≤ an ≤ bn for
all n. Let (sm) denote the sequence of partial sums of

∑∞
n=1 an, and

(tm) the sequence of partial sums of
∑∞

n=1 bn.
For (1), we are assuming that the sequence (tm) converges to a finite

sum t, and we must show that the sequence (sm) converges. We will use
the monotone convergence theorem. The sequence (sm) is increasing,
since the terms an are nonnegative:

sm+1 = sm + am+1 ≥ sm.
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For the same reason, the sequence of partial sums (tm) is increasing,
which means that the sum t is an upper bound for that sequence: tm ≤ t

for all indices m. But then

sm = a1 + a2 + · · · am ≤ b1 + b2 + · · ·+ bm = tm ≤ t,

which shows that t is an upper bound for the sequence (sm). Hence, the
sequence of partial sums (sm) is increasing and bounded above, so con-
vergent by the monotone convergence theorem. Morever, by Exercise
2.12 from Section 2.6, it follows that

∞∑
n=1

an = lim
n→∞

sm ≤ t =
∞∑
n=1

bn.

�

Example 3.25. Consider the series
∞∑
n=1

n

n3 + n2 + 1
.

The strategy here is to choose the p-series that most resembles this
series, and then try to use the comparison test. If we pay attention
only to the leading terms of the numerator and denominator, the ratio
looks like n/n3 = 1/n2, and so we choose p = 2. The p-series

∑∞
n=1 1/n2

is convergent, so we try to use part (1) of the comparison test, with
an = n/(n3 + n2 + 1) and bn = 1/n2. Note that

n

n3 + n2 + 1
<

n

n3
=

1

n2
,

so the required inequality does in fact hold. We conclude that the series
converges.

Example 3.26. Now consider the series
∞∑
n=1

n2

n3 − n.

Again, paying attention just to the leading terms of the numerator and
denominator yields the ratio n2/n3 = 1/n. So we will compare with the
divergent harmonic series

∑∞
n=1 1/n, using part (2) of the comparison

test with an = 1/n and bn = n2/(n3 − n). Since n3 − n < n3 for all n,
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we have
n2

n3 − n >
n2

n3
=

1

n
,

which is the required inequality. So we conclude that the series diverges.

Example 3.27. Now consider the series
∞∑
n=1

1

n+
√
n
.

In this case, we might try p = 1, since when n is large
√
n is much

smaller than n. So we would like to compare to the divergent harmonic
series, using part (2) of the comparison test with an = 1/n and bn =

1/(n +
√
n). Unfortunately, 1/n > 1/(n +

√
n), so the inequality goes

the wrong way! But note that n +
√
n < 2n, so 1/2n < 1/(n +

√
n)

as required. Moreover, the series
∑∞

n=1
1
2n

also diverges (this follows
either from the integral test or from Proposition 3.11). So, we conclude
that

∑∞
n=1

1
n+
√
n
diverges.

Remark 3.28. The previous example shows that our first guess
for a comparison series may not quite work, and it may be necessary
to modify our initial guess in some way. In the optional Section 3.7,
we present a more sophisticated comparison method called the limit
comparison test that often eliminates the need for clever modifications
of the initial guess.

The problems at the end of the chapter ask you to use the compar-
ison test to determine the convergence / divergence of various series.
Our main theoretical use for the comparison test is to develop two pow-
erful tools that will help us establish the convergence of many complex
series. We take up the first of these tools in the next section, where we
introduce and study the notion of absolute convergence of a complex
series. The second tool is called the ratio test and is the subject of
Section 3.6.

Key points for Section 3.4:

• Comparison Test (Proposition 3.22)
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3.5. Absolute and Conditional Convergence

The integral and comparison tests apply only to nonnegative real
series. But we are interested more generally in series with complex
terms. Fortunately, it turns out that we can often establish the con-
vergence of a complex series by instead investigating the convergence
of a related nonnegative real series, formed by taking the magnitude of
each term. To explain this further, we introduce a definition.

Definition 3.29. Suppose that
∑∞

n=1 cn is a complex series, and
consider the series obtained by replacing each term cn by its magni-
tude |cn|:

∞∑
n=1

|cn|.

If this nonnegative real series converges, then we say that the original
series

∑∞
n=1 cn is absolutely convergent.

Proposition 3.30. If the complex series
∑∞

n=1 cn is absolutely con-
vergent, then it is convergent.

Proof. Suppose that
∑∞

n=1 |cn| converges. We need to show that
the original series

∑∞
n=1 cn converges. We will do this by considering

the real and imaginary parts of the sequence of terms (cn); we will
write cn = an + bni.

We first do the special case where each of the terms cn = an is real.
Under this assumption, note that we have the following inequalities:

0 ≤ an + |an| ≤ 2|an|.

Indeed, if an ≥ 0, then |an| = an and so an + |an| = 2|an| ≥ 0. On the
other hand, if an < 0 is negative, then |an| = −an > 0 is positive, and
we have an + |an| = an − an = 0 < 2|an|. In either case, the stated
inequalities hold.

Our assumption is that the series
∑∞

n=1 |an| converges, from which
it follows that the constant multiple series

∑∞
n=1 2|an| also converges

(Proposition 3.11(c)). By the comparison test, we then conclude that
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n=1(an + |an|) converges. Using Proposition 3.11(b), we see our orig-

inal series converges, as claimed:
∞∑
n=1

an =
∞∑
n=1

((an + |an|)− |an|) =
∞∑
n=1

(an + |an|)−
∞∑
n=1

|an|.

Now return to the general case where the terms cn = an + bni are
complex. Then by Proposition 1.6, we have |an| ≤ |cn| and |bn| ≤ |cn|.
Since we are assuming that

∑∞
n=1 |cn| converges, the comparison test

says that each of the series
∑∞

n=1 |an| and
∑∞

n=1 |bn| are also convergent.
By the special case above, we find that the real series

∑∞
n=1 an and∑∞

n=1 bn converge. Since these are the real and imaginary parts of our
original complex series, it follows from Proposition 3.12 that

∑∞
n=1 cn

converges. �

Proposition 3.30 implies that, even though the integral and compar-
ison tests apply only to nonnegative real series, these tests are actually
able to establish the convergence of more general complex series, by
showing that they are absolutely convergent. We illustrate with the
following example.

Example 3.31. Consider the following complex series:
∞∑
n=1

(
3
5

+ 4
5
i
)n

n2 + in
.

Let’s show that it is absolutely convergent. We start by computing the
magnitude of the nth term:∣∣∣∣∣

(
3
5

+ 4
5
i
)n

n2 + in

∣∣∣∣∣ =

∣∣∣(35 + 4
5
i
)∣∣∣n

|n2 + in| =
1√

n4 + n2
.

We may compare the series of magnitudes
∑∞

n=1 1/
√
n4 + n2 to the

convergent p-series
∑∞

n=1 1/n2, because

1√
n4 + n2

=
1

n
√
n2 + 1

<
1

n2
.
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By the comparison test, the series of magnitudes
∑∞

n=1 1/
√
n4 + n2

converges, which means that the original complex series is absolutely
convergent. By Proposition 3.30, the original complex series converges.

Remark 3.32. Note that Proposition 3.30 only tells us that the
series converges, without telling us much about the sum. In particu-
lar, the magnitude of the sum of the series will not be equal to the
sum of the series of magnitudes. For an explicit example, consider the
convergent geometric series

∑∞
n=0(i/2)n. By Example 3.10, we have

∞∑
n=0

(
i

2

)n
=

1

1− i
2

=
2

2− i =
2

5
(2 + i) .

The magnitude of this sum is 2/
√

5.
On the other hand, the sequence of magnitudes is another conver-

gent geometric series:
∞∑
n=0

∣∣∣∣ i2
∣∣∣∣n =

∞∑
n=0

1

2n
=

1

1− 1
2

= 2.

Absolute convergence is a special type of convergence, and there
are convergent series that are not absolutely convergent. We give these
a name in the following definition.

Definition 3.33. If a complex series converges but is not abso-
lutely convergent, we say that it is conditionally convergent.

Remark 3.34. Conditional convergence of a series
∑∞

n=1 cn is un-
stable, in the sense that it depends on a tug-of-war between the ar-
guments of the terms cn to achieve convergence. If we eliminate the
tug-of-war by using only the magnitudes |cn|, then the series diverges.
In the optional Section 3.8, we explain a surprising aspect of the insta-
bility of conditionally convergent series. In particular, we will explain
how it is possible to reorder the terms cn so as to achieve different
sums! Such strange behavior does not occur for absolutely convergent
series, and in this sense absolute convergence is “better” than condi-
tional convergence.
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Example 3.35. (alternating harmonic series) The most famous ex-
ample of a conditionally convergent series is the alternating harmonic
series

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · .

The series of magnitudes is the divergent harmonic series
∑∞

n=1 1/n, so
the alternating harmonic series is not absolutely convergent. But our
next result (the alternating series test) says that it does converge, and
hence provides an example of a conditionally convergent series. Before
stating this result, we need a definition.

Definition 3.36. A real series
∑∞

n=1 an is alternating if the terms
alternate in sign. That is, the series is alternating if there is a nonneg-
ative sequence (bn) such that either

an = (−1)n+1bn for n ≥ 1,

or
an = (−1)nbn for n ≥ 1.

(The two cases allow for the first term a1 to be either positive or neg-
ative.)

Proposition 3.37 (Alternating Series Test). Suppose that
∑∞

n=1 an

is an alternating series with limn→∞ an = 0. Moreover, suppose that the
sequence of magnitudes (bn) = (|an|) is eventually decreasing: bn ≥ bn+1

for eventually all n. Then the series converges.

Proof. We will prove the case where a1 is positive, the other case
being similar. The following picture will be useful as we construct the
proof:
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0

s1

b1 = a1

b2

s2

b3

s3

b4

s4 · · · · · ·

...

s2k

b2k+1

s2k+1s

Consider the partial sums s2k with even indices, and remember that
the even terms a2k are negative, the odd terms a2k+1 are positive, and
the magnitudes bn = |an| are decreasing:

s2 = a1 + a2 = b1 − b2 ≥ 0

s4 = a1 + a2 + a3 + a4 = s2 + (b3 − b4) ≥ s2

s6 = s4 + a5 + a6 = s4 + (b5 − b6) ≥ s4
...

We see that the sequence (s2k) of even partial sums is increasing. But
these numbers are all bounded above by b1 = a1:

s2k = b1 − (b2 − b3)− · · · − (b2(k−1) − b2k−1)− b2k ≤ b1.

Thus, the sequence of even partial sums (s2k) is increasing and bounded,
so (by the monotone convergence theorem) it converges to a limit which
we call s. But now consider the sequence of odd partial sums (s2k+1):

s2k+1 = s2k + a2k+1 = s2k + b2k+1.

We have just shown that the sequence (s2k) converges to s. Moreover,
we are assuming that the sequence of terms (an) converges to zero,
i.e. that the terms an get arbitrarily small. But then if we only pay
attention to the odd terms a2k+1, we see that these are also getting ar-
bitrarily small, which means that the sequence containing only the odd
terms (a2k+1) also converges to zero. An application of Proposition 2.20
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then shows that

lim
k→∞

s2k+1 = lim
k→∞

(s2k + a2k+1) = lim
k→∞

s2k + lim
k→∞

a2k+1 = s+ 0 = s.

Since the two sequences (s2k) and (s2k+1) together comprise the entire
sequence of partial sums, it follows that the full sequence of partial sums
(sm) converges to s, which means that the alternating series

∑∞
n=1 an

converges. �

As with the integral and comparison tests, the alternating series test
tells us only that the series converges, but does not explicitly identify
the sum. But it turns out that the sums of many convergent alternating
series are especially easy to estimate. We illustrate with the alternating
harmonic series.

Example 3.38. Denote the sum of the alternating harmonic series
by s, so that

s =
∞∑
n=1

(−1)n+1

n
.

Each partial sum sm provides an approximation for s, but how good
are they? Well, the size of the error is given by the absolute value of
the tail of the series:

|error(m)| = |s− sm| =

∣∣∣∣∣∣
∞∑

n=m+1

(−1)n+1

n

∣∣∣∣∣∣ .
But note that the sequence of magnitudes (1/n) is decreasing. By the
alternating nature of the sum, it follows that the size of the tail of the
series is at most the size of its first term, 1/(m+ 1). So we see that for
all m ≥ 1

|error(m)| < 1/(m+ 1).

In general: for convergent alternating series with decreasing terms, the
error in the mth partial sum approximation is bounded by the size of
the (m+ 1)st term.

For example, suppose we wish to determine the value of the alter-
nating harmonic series s =

∑∞
n=1

(−1)n+1

n
, correct to 4 decimal places.

So we take m = 105 and look at the corresponding partial sum, keeping
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6 decimal places of precision:

s105 ≈ 0.693152.

Since the error in this approximation is less than 1/(105+1) < 0.00001,
we see that the first four decimal places of s are correctly given by
s ≈ 0.6931

We end this section by mentioning the tantalizing fact that

ln(2) = 0.693147 . . . .

Could it be that the alternating harmonic series converges to the nat-
ural logarithm of 2?

Key points for Section 3.5:

• Absolute convergence (Definition 3.29)
• Absolute convergence implies convergence (Proposi-
tion 3.30)
• Conditional convergence (Definition 3.33)
• Alternating series and test (Definition 3.36 and Propo-
sition 3.37)
• Conditional convergence of alternating harmonic series
(Example 3.35)

3.6. The Ratio Test

In this section, we establish a powerful test for absolute conver-
gence; the key step of the proof involves comparison with a convergent
geometric series.

Proposition 3.39 (The Ratio Test). Suppose that
∑∞

n=1 cn is a
complex series with nonzero terms cn. Investigate the consecutive ratios
of magnitudes |cn+1|/|cn|:

(1) If limn→∞ |cn+1|/|cn| = L < 1, then the series
∑∞

n=1 cn is ab-
solutely convergent;
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(2) If limn→∞ |cn+1|/|cn| = L > 1 or if limn→∞ |cn+1|/|cn| = +∞,
then the series

∑∞
n=1 cn diverges.

Remark 3.40. If limn→∞ |cn+1|/|cn| = 1, then we can’t draw any
definite conclusion from the ratio test: the series may be convergent or
divergent. For example:

• the p-series
∑∞

n=1 1/n2 converges, but

lim
n→∞

n2

(n+ 1)2
= lim

n→∞

1

1 + 2
n

+ 1
n2

= 1.

• the harmonic series
∑∞

n=1 1/n diverges, but

lim
n→∞

n

n+ 1
= lim

n→∞

1

1 + 1
n

= 1.

Proof of Theorem 3.39. To prove (1), we assume that the limit
limn→∞ |cn+1|/|cn| = L < 1. Our goal is to compare the series of magni-
tudes

∑∞
n=0 |cn| to a convergent geometric series. We begin by choosing

a positive real number r with L < r < 1; this will be the common ratio
of our geometric series. Consider the interval of radius d = r − L > 0

centered at L:

0 L 1r
( )

d

Since the sequence (|cn+1|/|cn|) converges to L, it follows that there
is an index N such that for all n ≥ N , then ratios |cn+1|/|cn| are
contained in this interval. In particular, for n ≥ N we have

|cn+1|
|cn|

≤ r < 1.
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Multiplying by |cn| yields the relation |cn+1| ≤ r|cn| for n ≥ N . So we
have

|cN+1| ≤ r|cN |
|cN+2| ≤ r|cN+1| ≤ r2|cN |
|cN+3| ≤ r|cN+2| ≤ r3|cN |

...

|cn| ≤ rn−N |cN |
...

Now watch the indices carefully to recognize the convergent geo-
metric series:

∞∑
n=N

rn−N |cN | = |cN |+ |cN |r + |cN |r2 + |cN |r3 + · · ·

=
∞∑
k=0

|cN |rk.

Hence, by the comparison test we find that the series
∑∞

n=N |cn| con-
verges. But this only differs from the full series of magnitudes

∑∞
n=1 |cn|

by finitely many terms, so it follows that
∑∞

n=1 |cn| converges, and hence
the original series

∑∞
n=1 cn is absolutely convergent.

For (2), suppose that the limit L > 1 or L = +∞. A similar
argument to that given for (1) shows that there is an index N and a
number r > 1 such that for n ≥ N we have |cn+1| ≥ r|cn|. Then it
follows as before that |cn| ≥ rn−N |cN | ≥ |cN | > 0 for n ≥ N . Thus, the
sequence of terms (cn) does not converge to zero, so the series

∑∞
n=1 cn

diverges by the divergence test. �

Exercise 3.5. Fill in the details of the proof of part (2) of the
ratio test, Proposition 3.39.

Example 3.41. Consider the positive series
∞∑
n=1

an =
∞∑
n=1

2n

n2
.
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To apply the ratio test, we begin by investigating the limit of the ratio
of consecutive terms:

lim
n→∞

an+1

an
= lim

n→∞

2n+1

(n+ 1)2
n2

2n

= lim
n→∞

2n2

n2 + 2n+ 1

= lim
n→∞

2

1 + 2
n

+ 1
n2

= 2.

Since the limit is greater than 1, the ratio test says that the series
diverges.

Example 3.42. Now consider the complex series
∞∑
n=1

cn =
∞∑
n=1

(2i)n

3n
√
n
.

We apply the ratio test:

lim
n→∞

|cn+1|
|cn|

= lim
n→∞

2n+1

3n+1
√
n+ 1

3n
√
n

2n

= lim
n→∞

2

3

√
n

n+ 1

=
2

3
lim
n→∞

√
1

1 + 1
n

=
2

3
.

Since the limit is less than 1, the ratio test says that the series is
absolutely convergent.

Example 3.43. The ratio test tends to work especially well on
series whose terms cn involve n as an exponent or in a factorial. For
instance: fix a complex number c and consider the series

∞∑
n=0

cn =
∞∑
n=0

cn

n!
.
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To apply the ratio test, we compute the ratio of consecutive magni-
tudes:

|cn+1|
|cn|

=
|c|n+1

(n+ 1)!

n!

|c|n =
|c|

n+ 1
.

Now take the limit, remembering that c is a fixed complex number:

lim
n→∞

|c|
n+ 1

= |c| lim
n→∞

1

n+ 1
= |c| · 0 = 0 < 1.

By the ratio test, it follows that the series is absolutely convergent for
all complex c.

We record a consequence of this example as a lemma for future use.
It says that the factorials n! grow much faster than the terms of any
geometric sequence (cn). For more about growth rates, see the optional
Section 3.7.

Lemma 3.44. For any complex number c, the sequence (cn/n!) con-
verges to zero.

Proof. This follows from the divergence test: since the series∑∞
n=0

cn

n!
converges, the sequence of terms (cn/n!) must converge to

zero. �

Remark 3.45. If we think of z as a complex variable, then the
previous example defines a complex function h : C → C, given by the
series formula

h(z) =
∞∑
n=0

zn

n!
= 1 + z +

1

2
z2 +

1

6
z3 +

1

24
z4 + · · ·

This is an important special case of a power series, the topic of the
next chapter.

Key points for Section 3.6:

• The ratio test (Proposition 3.39)
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3.7. Optional: Limit Comparison, Growth and Decay (R)

This section takes place entirely in the context of the real numbers R.
In Example 3.27 of Section 3.4, we considered the positive series

∞∑
n=1

1

n+
√
n
.

Motivated by the fact that n is much bigger than
√
n when n is large,

we chose to compare with the divergent harmonic series
∑∞

n=1 1/n.
But our initial attempt was frustrated by the fact that the inequal-
ity between terms goes the wrong way to conclude divergence by the
comparison test: 1/(n +

√
n) < 1/n. Our initial intuition was cor-

rect, however, and we succeeded by comparing to the divergent series∑∞
n=1 1/2n instead.
At base, our initial diagnosis was that the series

∑∞
n=1 1/(n+

√
n)

and
∑∞

n=1 1/n behave the same way (i.e., diverge), because the two
sequences of terms (1/(n+

√
n)) and (1/n) converge to zero at similar

rates. One way to measure the difference between these “rates of decay”
is to investigate the ratios:

lim
n→∞

1/(n+
√
n)

1/n
= lim

n→∞

n

n+
√
n

= lim
n→∞

1

1 + 1√
n

= 1.

The key point here is that the limit is a nonzero real constant, which
we interpret as saying that the two rates of decay toward zero are
similar. Observe that a limit of zero for these ratios would instead
mean that the numerators were getting small significantly faster than
the denominators:

lim
n→∞

1/n2

1/n
= lim

n→∞

n

n2
= lim

n→∞

1

n
= 0.

At the other extreme, if the ratios diverge to +∞, then the numerators
are getting small significantly slower than the denominators:

lim
n→∞

1/n

1/n2
= lim

n→∞

n2

n
= lim

n→∞
n = +∞.

These ideas come together in the following strengthening of the
comparison test.
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Proposition 3.46 (The Limit Comparison Test). Suppose that∑∞
n=1 an and

∑∞
n=1 bn are two series with eventually nonnegative terms

an and bn. Furthermore, suppose that bn > 0 for eventually all n.
Consider the ratios an/bn, and suppose that

lim
n→∞

an
bn

= L with 0 < L < +∞.

Then the series
∑∞

n=1 an converges if and only if the series
∑∞

n=1 bn

converges.

Proof. The basic idea is to reduce this result to the direct com-
parison test, Proposition 3.22. For this, we need to transform our
hypothesis about the limit of the ratios into some inequalities between
the terms an and bn of the two series. As usual, since convergence de-
pends only on the eventual behavior of the terms, we may assume that
all terms are nonnegative, with bn > 0 for all n.

Because L is a positive real number, we may choose a smaller posi-
tive real number 0 < d < L. We then play (and win!) the convergence
game using the distance d: there exists an index N such that for n ≥ N

we have ∣∣∣∣anbn − L
∣∣∣∣ < d.

This single inequality for the absolute value is really a chain of two
inequalities:

−d < an
bn
− L < d.

Now do a bit of rearrangment, and recall that L− d > 0:

0 < (L− d)bn < an < (L+ d)bn for all n ≥ N.

These are the inequalities that we are looking for, and we now use the
comparison test.

First assume that
∑∞

n=1 bn converges. Then,
∑∞

n=N bn also con-
verges, since we have simply omitted finitely many terms at the be-
ginning. Multiplying by the constant L+ d then yields the convergent
series

∑∞
n=N(L+d)bn. By the comparison test, it follows that

∑∞
n=N an

converges, and hence (after adding finitely many initial terms) that the
full series

∑∞
n=1 an also converges.
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Now suppose that
∑∞

n=1 an converges. The next exercise asks you
to show that

∑∞
n=1 bn must also converge. �

Exercise 3.6. Finish the proof of the limit comparison test (Propo-
sition 3.46) by showing that the convergence of

∑∞
n=1 an implies the

convergence of
∑∞

n=1 bn.

Example 3.47. Consider the positive series
∞∑
n=1

100n2 + 2n+ 17

n4 + n+ 1
.

Focusing just on the leading exponents of the numerator and denomi-
nator yields the convergent p-series

∑∞
n=1

n2

n4 =
∑∞

n=1
1
n2 . We use limit

comparison:

lim
n→∞

(100n2 + 2n+ 17)/(n4 + n+ 1)

1/n2
= lim

n→∞

n2(100n2 + 2n+ 17)

n4 + n+ 1

= lim
n→∞

100 + 2/n+ 17/n2

1 + 1/n3 + 1/n4

= 100.

Since the limit is a nonzero constant, we conclude that the original
series converges.

The topic of decay rates introduced before the limit comparison
test is an important subject in its own right, and there is a comple-
mentary notion of growth rates. In fact, decay and growth are two sides
of the same coin: if I understand the rate at which a positive sequence
(an) is decaying to zero, then I also understand the rate at which the
reciprocals (1/an) are growing toward +∞. In the remainder of this
section, we discuss the growth rates of various sequences, and in par-
ticular we distinguish between 4 types of growth: logarithmic, power,
exponential, and factorial.

Definition 3.48 (logarithmic growth). Consider the nonnegative
sequence (ln(n)) arising from the real function f(x) = ln(x), which
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diverges to +∞. If (an) is any positive sequence such that

lim
n→∞

ln(n)

an
= L for 0 < L < +∞,

then we say that (an) has logarithmic growth.

Example 3.49. The sequence (an) = (ln(n2)) has logarithmic growth:

lim
n→∞

ln(n)

an
= lim

n→∞

ln(n)

ln(n2)
= lim

n→∞

ln(n)

2 ln(n)
= lim

n→∞

1

2
=

1

2
.

Definition 3.50 (power growth). Fix a positive exponent r > 0,
and consider the nonnegative sequence (nr) arising from the real func-
tion f(x) = xr. This sequence diverges to +∞ since r > 0. If (an) is
any positive sequence such

lim
n→∞

nr

an
= L for 0 < L < +∞,

then we say that (an) has r-power growth. We say that a positive
sequence (an) has power growth if there exists r > 0 such that (an) has
r-power growth.

Example 3.51. The sequence (an) = (n3+
√
n) has 3-power growth

(also called cubic growth):

lim
n→∞

n3

n3 +
√
n

= lim
n→∞

1

1 + 1
n2
√
n

= 1.

Definition 3.52 (exponential growth). Fix a positive base c > 1,
and consider the geometric sequence (cn) arising from the real function
f(x) = cx, which diverges to +∞. If (an) is any positive sequence such

lim
n→∞

cn

an
= L for 0 < L < +∞,

then we say that (an) has c-exponential growth. We say that a positive
sequence (an) has exponential growth if it has c-exponential growth for
some c > 1.

Example 3.53. The sequence (en+100) has e-exponential growth:

lim
n→∞

en

en+100
= lim

n→∞

en

ene100
= lim

n→∞

1

e100
= e−100.
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Definition 3.54 (factorial growth). Consider the nonnegative se-
quence (n!), which diverges to +∞. If (an) is any positive sequence
such that

lim
n→∞

n!

an
= L for 0 < L < +∞,

then we say that (an) has factorial growth.

Exercise 3.7. Give an example of a sequence (an) that has facto-
rial growth.

We wish to determine the relationship between these four different
rates of growth. The key idea is presented in the following definition.

Definition 3.55. Suppose that (an) and (bn) are positive sequences,
both diverging to +∞. Then we say that the growth of (bn) dominates
the growth of (an) if

lim
n→∞

an
bn

= 0.

Intuitively, dominance means that the terms bn grow much faster than
the terms an.

Example 3.56. The growth of (n2) dominates the growth of (n):

lim
n→∞

n

n2
= lim

n→∞

1

n
= 0.

More generally, if 0 < r < s, then s-power growth dominates r-power
growth:

lim
n→∞

nr

ns
= lim

n→∞

1

ns−r
= 0.

Exercise 3.8. Suppose that d > c > 1, and show that d-exponential
growth dominates c-exponential growth: limn→∞(cn/dn) = 0.

Our goal is to show that (see Figure 3.7)

factorial growth dominates
exponential dominates

power dominates
logarithmic.
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Figure 3.7. The left hand side shows plots indicating 5
different growth rates: logarithmic (blue), 1/2-power (or-
ange), 2-power or quadratic (green), exponential (red),
and factorial (purple dots). Dominance concerns the
long term behavior of these plots, not the initial relation-
ships: the square-root graph is initially above the qua-
dratic graph, and the factorial sequence is initially below
the exponential graph. The right hand side illustrates
how factorial growth dominates exponential growth in
the long-run.

We will begin at the bottom and work our way up.

Proposition 3.57 (power growth dominates logarithmic growth).
Let r > 0 be any positive real number. Then

lim
n→∞

ln(n)

nr
= 0.

As a result, if (an) has logarithmic growth and (bn) has power growth,
then the growth of (bn) dominates the growth of (an).

Proof. The sequence
(
ln(n)/nr

)
arises from f(x) = ln(x)/xr, so

by Proposition 2.30, it suffices to prove that limx→∞ f(x) = 0. For this
we use L’Hôpital’s rule:

lim
x→∞

(ln(x))′

(xr)′
= lim

x→∞

1/x

rxr−1
= lim

x→∞

1

rxr
= 0.

Thus, it follows that limx→∞ f(x) = 0, and so limn→∞ ln(n)/nr = 0.
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Now suppose that (an) has logarithmic growth and (bn) has power
growth, with

lim
n→∞

ln(n)

an
= L1 > 0 and lim

n→∞

nr

bn
= L2 > 0.

Then

lim
n→∞

an
bn

= lim
n→∞

an
ln(n)

· ln(n)

nr
· n

r

bn

=

(
lim
n→∞

an
ln(n)

)(
lim
n→∞

ln(n)

nr

)(
lim
n→∞

nr

bn

)
=

1

L1

· 0 · L2

= 0.

This shows that the power growth of (bn) dominates the logarithmic
growth of (an). �

Proposition 3.58 (exponential growth dominates power growth).
Let r > 0 be any positive real number, and c > 1 be a positive real base.
Then

lim
n→∞

nr

cn
= 0.

As a result, if (an) has power growth and (bn) has exponential growth,
then the growth of (bn) dominates the growth of (an).

Proof. Consider the series
∑∞

n=1
nr

cn
and apply the ratio test:

lim
n→∞

(n+ 1)r

cn+1

cn

nr
= lim

n→∞

1

c

(
n+ 1

n

)r
=

1

c

(
lim
n→∞

(
1 +

1

n

))r

=
1

c
< 1,

since we are assuming that c > 1. By the ratio test, the series converges.
But then the divergence test says that the sequence of terms (nr/cn)

must converge to zero as claimed. �

Exercise 3.9. Finish the proof of Proposition 3.58 by modifying
the end of the proof of Proposition 3.57.
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Proposition 3.59 (factorial growth dominates exponential growth).
Let c > 1 be a positive real base. Then

lim
n→∞

cn

n!
= 0.

As a result, if (an) has exponential growth and (bn) has factorial growth,
then the growth of (bn) dominates the growth of (an).

Proof. The limit is Lemma 3.44. The final statement is proved as
in Proposition 3.57 and Exercise 3.9. �

Remark 3.60. These different growth rates are of fundamental im-
portance for the study of algorithms in computer science. Roughly
speaking, an algorithm is a precise sequence of steps for solving a math-
ematical problem for a given family of inputs. But algorithms are not
all equally good, and in particular we are interested in efficient algo-
rithms: those that will terminate in a reasonable amount of time. Of
course, we expect the algorithm to take longer on bigger inputs than on
smaller inputs, so what we care about is the growth rate of the sequence
of running times (tn) indexed by n = size of input. Generally speaking,
an algorithm is thought to be efficient if its sequence of running times
(tn) is dominated by power growth (these are called polynomial time al-
gorithms). On the other hand, algorithms with (tn) having exponential
or factorial growth are considered extremely inefficient.

For example: consider the problem of determining whether a posi-
tive integerm > 1 is prime. A brute force algorithm consists of checking
whether each of the numbers 1 < k < m is a divisor ofm, and this takes
approximately m steps (if we think of each trial division as one step).
The relevant size of the input integer m is given roughly by n = log2m,
since integers are stored in a computer as strings of 0’s and 1’s using
the binary number system. Thus, the sequence of running times (tn)

indexed by input size is given by

tn ≈ m = 2log2m = 2n.



160 3. SERIES

So the sequence of running times (tn) of the brute force algorithm for
testing primality has exponential growth, is not efficient, and has no
practical value for the testing of large integers.

In 2002 there occurred a major development: the Indian computer
scientists Manindra Agrawal, Neeraj Kayal, and Nitin Saxena pub-
lished an efficient polynomial time algorithm for primality testing (now
called the AKS primality test). They showed that the sequence of run-
ning times (tn) for their algorithm is dominated by r-power growth for
any r > 12, and variants of the algorithm have now reduced the value
of r further, to around 6. You may be interested to learn that Kayal
and Saxena were undergraduates when they discovered their algorithm!

Key points for Section 3.7:

• The limit comparison test (Proposition 3.46)
• Growth rates and dominance (Definitions 3.48–3.55)
• Factorial growth dominates exponential dominates
power dominates logarithmic (Propositions 3.57–3.59
and Figure 3.7)

3.8. Optional: Rearrangements

In Section 3.5 we saw that the alternating harmonic series is con-
ditionally convergent:

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

Recall what this means: the series converges, but the corresponding se-
quence of magnitudes

∑∞
n=1 1/n diverges. We also used the alternating

nature of the series to provide an estimate for the value of the sum s,
correct to 4 decimal places: s ≈ 0.6931. In this section, we want to
prove the following strange fact about the alternating harmonic series:
simply by reordering the terms, we can make the sum any real number
we choose.
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Before stating and proving the result, we pause to emphasize how
strange it is, based on our experience with finite summation. Indeed,
if I have four numbers a, b, c, d, then the commutative and associative
laws for addition imply that the order of summation doesn’t matter:

a+ b+ c+ d = a+ c+ d+ b = d+ c+ b+ a = etc.

Clearly this extends to any finite collection of numbers: changing the
order of a finite sum does not affect the result. But let’s investigate
what happens if we rearrange the alternating harmonic sequence as
follows:

(a`) =

(
1,−1

2
,−1

4
,
1

3
,−1

6
,−1

8
,
1

5
,− 1

10
,− 1

12
, . . .

)
.

In this sequence, instead of alternating signs, we include two negative
terms after each positive term. Here is the series:

∞∑
`=1

a` = 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ · · ·

Let’s look at some numerical values for the partial sums:

s2991 ≈ 0.346448

s2992 ≈ 0.346949

s2993 ≈ 0.346699

s2994 ≈ 0.346448

s2995 ≈ 0.346949

s2996 ≈ 0.346699

s2997 ≈ 0.346448

s2998 ≈ 0.346949

s2999 ≈ 0.346699

s3000 ≈ 0.346449

It certainly appears that the partial sums are converging to a value close
to 0.346, which is different than the sum s ≈ 0.6931 of the alternating
harmonic series.

Proposition 3.61. Let L be any real number. Then there exists a
rearrangement (a`) of the alternating harmonic sequence ((−1)n+1/n)

such that
∑∞

`=1 a` = L. By a rearrangement, we mean that every term
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(−1)n+1/n appears exactly once in the sequence (a`), and there are no
additional terms.

Proof. We begin by observing that the series
∑∞

n=1 1/2n diverges,
since it is simply the divergent harmonic series multiplied by the con-
stant 1/2. But then the comparison test shows that the sum of just
the positive terms of the alternating harmonic series also diverges:

Series P :
∞∑
n=1

1

2n− 1
= 1 +

1

3
+

1

5
+ · · · = +∞.

Also, the sum of just the negative terms diverges:

Series N :
∞∑
n=1

−1

2n
= −1

2
− 1

4
− 1

6
− · · · = −∞.

Note that every term of the alternating harmonic sequence ((−1)n+1/n)

appears as a term in exactly one of the series P or N , and no other
terms appear. So if we make use of every term from P and N exactly
once in our new sequence (a`), then we will have a rearrangement of
the alternating harmonic sequence.

We will assume that L > 0, although a similar argument works in
the negative case. The basic idea is to use the positive terms from P

until we get to the right of L, then make use of the negative terms from
N until we get to the left of L, then use more terms from P until we
overshoot L again, etc. The divergence statements above imply that no
matter how many positive terms of the series P we have already used,
the remaining terms still sum to +∞. Similarly, no matter how many
negative terms of the series N we have already used, the remaining
terms still sum to −∞. So we can continue this process forever, and
at each stage we will be able to overshoot the target L. We build the
sequence (a`) by listing the terms from P and N in the order we use
them. As we will see, this construction leads to a sequence of partial
sums (sm) for the series

∑∞
`=1 a` that converges to L. We describe

this process a bit more explicitly below, by reference to the following
picture:
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0 L sm1

P1

sm2

N1

sm3

P2

sm4

N2

· · · · · ·

...

sm2k

Pk

sm2k+1

(1) Let m1 ≥ 1 be the smallest index such that the finite sum
P1 =

∑m1

n=1 1/(2n − 1) > L. We begin the sequence (a`) by
using these terms:

(a1, a2, a3, . . . , am1) =

(
1,

1

3
,
1

5
, . . . ,

1

2m1 − 1

)
.

We have sm1 = P1 > L.
(2) Now let k1 ≥ 1 be the smallest index such that

P1 +N1 = P1 −
k1∑
n=1

1

2n
< L.

We continue the sequence (a`) by adjoining

(am1+1, am1+2, . . . , am1+k1) =

(
−1

2
,−1

4
, . . . ,− 1

2k1

)
.

Setting m2 = m1 + k1, we have sm2 = P1 +N1 < L.
(3) Now add up just enough of the next unused terms from series

P to obtain a sum P2 satisfying sm2 + P2 > L. Adjoining
these positive terms to the portion of the sequence (a`) already
constructed, we get sm3 = sm2 + P2 > L.

(4) Keep going, hopping back and forth over L by alternating
between the series P and N .

Note the following points about this construction:



164 3. SERIES

• At each step we adjoin at least one unused term from either P
or N . It follows that we eventually use every term of P and N
exactly once, and so (a`) is a rearrangement of the alternating
harmonic series.
• The sequence (a`) has a first positive string of terms, then a
first negative string of terms, then a second positive string of
terms, then a second negative string of terms, etc. At the end
of the kth positive string of terms, we have certainly made
use of every odd reciprocal up to and including 1/(2k − 1),
and so all later positive terms of (a`) are smaller than 1/2k.
Similarly, after the kth negative string of terms, we have made
use of every even reciprocal up to and including 1/2k, so all
later negative terms of (a`) also have size smaller than 1/2k.
Hence, after the kth pair of positive and negative strings, all
terms of (a`) are smaller than 1/2k.
• Corresponding to the strings of positive and negative terms in

(a`), the sequence of partial sums (sm) has stretches of increase
and decrease. Moreover, the sequence (sm) changes direction
just after it hops over L. Moreover, if we consider one of these
hops sm−1 < L < sm = sm−1 +am, then |L− sm| < |am|. That
is: when the partial sums hop over L, they overshoot by at
most the size of the last used term, and then they head in the
other direction, back toward L.

We now wish to show that the sequence of partial sums (sm) con-
verges to L. For this, we play the convergence game. You begin by
choosing a positive distance d > 0, and I must respond with an index
N such that |sm−L| < d whenever m ≥ N . To find N , I first select an
integer k such that 1/k < d. Then consider the kth pair of positive and
negative strings of (a`) just discussed. Let N be the index of the last
term aN of the kth negative string. As mentioned above, |a`| ≤ 1/2k

for every ` ≥ N . Now we must verify that my choice of N is valid. We
will make use of the following picture:
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0 L

sN−1sN

aN

sN+t−1· · ·

aN+t

sN+t

To get started, consider the partial sum sN , which is a turning point
for the sequence:

sN−1 + aN = sN < L < sN−1.

It follows that |L − sN | < |aN | ≤ 1/2k < d. Beginning with sN ,
the partial sums increase for a while until reaching the next turning
point sN+t. All the partial sums sN+1, sN+2, . . . , sN+t−1 are between sN
and L, hence closer to L than d. For the turning point sN+t we have

sN+t−1 < L < sN+t = sN+t−1 + aN+t < sN+t−1 +
1

2k
< sN+t−1 + d.

Thus, we have |sN+t − L| < d as well. Continuing in this way, passing
from turning point to turning point, we see that all partial sums sm for
m ≥ N are within a distance d of L. Thus, my choice of N is valid,
and we have proved that limm→∞ sm = L, which means that

∞∑
`=1

a` = L.

�

It turns out that this strange behavior is not confined to the alter-
nating harmonic series, but occurs for all real conditionally convergent
series. Happily, it cannot occur for absolutely convergence series. These
facts are recorded in the following theorem, due to Riemann:

Theorem 3.62 (Riemann Rearrangement). Consider a convergent
real series

∑∞
n=1 bn = s.

(1) If
∑∞

n=1 bn is absolutely convergent, then every rearrangement (a`)

of the sequence (bn) sums to the same value s:
∞∑
`=1

a` =
∞∑
n=1

bn = s.
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(2) If
∑∞

n=1 bn is conditionally convergent, then for every real num-
ber L, there exists a rearrangment (a`) of the sequence (bn) that
sums to L:

∞∑
`=1

a` = L.

We finish this section with a complex version of this result. It was
discovered by the 19 year-old Paul Lévy in 1905 while he was still
an undergraduate at the École Polytechnique in Paris. He actually
formulated his result for series of vectors in Rd, but there was a gap in
his proof for d > 2 that was filled in 1913 by the German mathematician
Ernst Steinitz. The case d = 2 applies to the complex numbers C:

Theorem 3.63 (Lévy Rearrangement). Suppose that
∑∞

n=1 cn = s

is a convergent complex series.

(1) If
∑∞

n=1 cn is absolutely convergent, then every rearrangement (a`)

of the sequence (cn) sums to the same value s:
∞∑
`=1

a` =
∞∑
n=1

cn = s.

(2) If
∑∞

n=1 cn is conditionally convergent, then let S denote the
collection of all sums of rearrangements of (bn). That is: a
complex number z is in the set S if and only if there exists a
rearrangement (a`) of the sequence (bn) such that

∑∞
`=1 a` = z.

Then there are two possibilities:
(a) the set S is a line in the complex plane;
(b) the set S = C is the entire complex plane.

Key points for Section 3.8:

• Riemann Rearrangement Theorem (Theorem 3.62)
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3.9. In-text Exercises

This section collects the in-text exercises that you should have worked
on while reading the chapter.

Exercise 3.1 What is wrong with the following telescoping argument
that purports to show that the series sums to 0?

∞∑
n=1

(−1)n+1 = 1− 1 + 1− 1 + 1− 1 + · · ·

= (1− 1) + (1− 1) + (1− 1) + · · ·
= 0 + 0 + 0 + · · ·
= 0.

Can you make a similar (invalid) argument that suggests that the series
sums to 1?

Exercise 3.2 Prove parts (b) and (c) of Proposition 3.11.

Exercise 3.3 Use Proposition 2.25 to prove Proposition 3.12.

Exercise 3.4 After reading the proof of the integral test, write a
paragraph explaining where each of the hypotheses on the function f
are used in the proof: (1) continuous, (2) nonnegative, (3) decreasing.

Exercise 3.5 Fill in the details of the proof of part (2) of the ratio
test, Proposition 3.39.

Exercise 3.6 Finish the proof of the limit comparison test (Propo-
sition 3.46) by showing that the convergence of

∑∞
n=1 an implies the

convergence of
∑∞

n=1 bn.

Exercise 3.7 Give an example of a sequence (an) that has factorial
growth.

Exercise 3.8 Suppose that d > c > 1, and show that d-exponential
growth dominates c-exponential growth:

lim
n→∞

cn

dn
= 0.
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Exercise 3.9 Finish the proof of Proposition 3.58 by modifying the
end of the proof of Proposition 3.57.
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3.10. Problems

3.1. For the following series, compute them-th partial sum form = 1, 2, 3, 4:

(a)
∑∞

k=1

(
2
3

)k
(b)

∑∞
k=1

(−2
3

)k
(c)

∑∞
k=1

(
2i
3

)k
(d)

∑∞
n=1

1
n(n+2)

(e)
∑∞

n=1
(−1)n
n(n+2)

(f)
∑∞

n=1
n
n+1

(g)
∑∞

n=1(2i)
n

3.2. Consider the infinite series
∑∞

n=1
1

n(n+2)
.

(a) Find real numbers A and B with 1
n(n+2)

= A
n

+ B
n+2

.
(b) Use a telescoping argument to show that

∑∞
n=1

1
n(n+2)

converges
and find the sum of the series.

3.3. Consider the infinite series
∑∞

n=1
1

n(n+3)
.

(a) Find real numbers A and B with 1
n(n+3)

= A
n

+ B
n+3

.
(b) Use a telescoping argument to show that

∑∞
n=1

1
n(n+3)

converges
and find the sum of the series.

3.4. Consider the infinite series
∑∞

n=1
1

4n2−1 .

(a) Find real numbers A and B with 1
4n2−1 = A

2n−1 + B
2n+1

.
(b) Use a telescoping argument to show that

∑∞
n=1

1
4n2−1 converges and

find the sum of the series.

3.5. Let an = 3n
4n−1 .

(a) Determine whether the sequence (an) converges or diverges.
(b) Determine whether the series

∑∞
n=0 an converges or diverges.

3.6. Let bn = (3i)n.

(a) Determine whether the sequence (bn) converges or diverges.
(b) Determine whether the series

∑∞
n=0 bn converges or diverges.

3.7. Let cn =
(
i
3

)n.
(a) Determine whether the sequence (cn) converges or diverges.
(b) Determine whether the series

∑∞
n=0 cn converges or diverges.

3.8. Show that the following real series diverge:
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(a)
∑∞

n=1
2n

3n−1

(b)
∑∞

k=1

(
4
3

)k
(c)

∑∞
n=1 cos

(
1

n+1

)
(d)

∑∞
n=1

n√
n2+n−1

(e)
∑∞

n=0

(√
4n2 + 1− n

)
(f)
∑∞

n=1
1

arctan(n)

3.9. Suppose that
∑∞

n=1 cn is a convergent series with complex terms.
Show that

∑∞
n=1 cn must also converge.

3.10. In Section 3.2, we learned that
∑∞

n=0 c
n = 1

1−c , when |c| < 1.
Fix some c with |c| < 1.

(a) Show that
∞∑
n=1

cn =
c

1− c.

(b) Find the sum of the infinite series
∑∞

n=2 c
n.

3.11. Determine whether the following geometric series converge or
diverge. If the series converges, find its sum.

(a)
∑∞

n=0

(
2i
3

)n
(b)

∑∞
n=1

(
3i
2

)n
(c)

∑∞
n=1

(
π
3

)n
(d)

∑∞
n=1

(−5
6

)n
(e)

∑∞
n=1

(−5i
6

)n
(f)
∑∞

n=2

(
3
4

)n
3.12. Consider the infinite series

∑∞
n=1

1
n(n+1)(n+2)

.

(a) Find constants A, B, C such that 1
n(n+1)(n+2)

= A
n

+ B
n+1

+ C
n+2

.
(b) Use a telescoping argument to show that

∑∞
n=1

1
n(n+1)(n+2)

con-
verges and find the sum of the series.

3.13. For the following series, find all values of c for which the series
converges. Draw a picture of the region on the complex plane.

(a)
∑∞

n=1
cn

3n

(b)
∑∞

n=1(c− 2)n
(c)

∑∞
n=1(2ic)

n

(d)
∑∞

n=1

(
3i
4c

)n
3.14. Find all values of c for which

∞∑
n=2

(1 + c)−n = 1.
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3.15. For each of the following series: (1) find a positive, decreasing,
and continuous function f(x) with f(n) = an for all n, and (2) use the
integral test to determine whether the series converges or diverges.

(a)
∑∞

n=1
1√
n+3

(b)
∑∞

n=2
1

n ln(n)

(c)
∑∞

n=1
n2

n3+1

3.16. Use the integral test to find all values of p for which
∑∞

n=2
1

n(lnn)p

converges.

3.17. Use the integral test to find all values of p for which
∑∞

n=1 n(1 + n2)p

converges.

3.18. Estimate
∑∞

n=1
1
n5 correct to three decimal places.

3.19. Estimate
∑∞

n=1(2n+ 1)−6 correct to five decimal places.

3.20. Use the direct comparison test to determine whether the follow-
ing real series converge or diverge:

(a)
∑∞

n=1
n−1
n2
√
n

(b)
∑∞

n=2

√
n

n−1
(c)

∑∞
n=1

3n

n+4n

(d)
∑∞

n=1
sin(n)+1

n2

(e)
∑∞

n=1
1√
n3+n

(f)
∑∞

n=1
cos2(n)

2n

(g)
∑∞

n=4

√
n

n−3

3.21. Determine whether the following alternating real series converge
or diverge.

(a)
∑∞

n=2(−1)n+1 1
n lnn

(b)
∑∞

n=1(−1)n lnn
n

(c)
∑∞

n=1(−1)n+1 n
4n+1

(d)
∑∞

n=1(−1)n cos
(
1
n

)
(e)

∑∞
n=1(−1)n sin

(
1
n

)

3.22. Determine whether the following series converges:
∑∞

n=1
in

n
.

3.23. Show that the following complex series are absolutely convergent:
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(a)
∑∞

n=1

√
n+in
n3

(b)
∑∞

n=1
(1+i)n

n22n

(c)
∑∞

n=1

√
n−1√
n+n2i

(d)
∑∞

n=1
(3+4i)n

5n(n+n3i)

(e)
∑∞

n=1
(3+2i)n

n(4+i)n

3.24. Use the ratio test to determine whether the following real series
converge or diverge:

(a)
∑∞

n=1
2n

n5

(b)
∑∞

n=0

√
n

3n

(c)
∑∞

n=0
n2

(2n+1)!

(d)
∑∞

n=1
en

(2n)!

(e)
∑∞

n=1
(n!)2

(2n)!

3.25. Use the ratio test to determine whether the following complex
series converge or diverge.

(a)
∑∞

n=1
(2+i)n

n

(b)
∑∞

n=0
(3i)nn
4n

(c)
∑∞

n=1
(2+3i)n

πnn

(d)
∑∞

n=1
(1+i)n

√
n

3n

(e)
∑∞

n=1

√
n+1

(5−i)n

3.26. In Example 3.43, we showed that the series
∑∞

n=0
1
n!

converges
by using the ratio test. Provide an alternate proof of convergence
for this series using the comparison test. (Hint: use the geometric
series

∑∞
n=0

1
2n
.)



CHAPTER 4

POWER SERIES

4.1. Preview: The Geometric Series

We preview the topics of this chapter by focusing on a single im-
portant example: the complex function defined by f(z) = 1/(1 − z).
The domain of f(z) is the entire complex plane except for the point
z = 1, because this point would lead to a zero in the denominator of
the expression 1/(1 − z). Let’s begin by tracking the effect of f on a
single complex number z using the geometric ideas from Section 1.1:

z 7→ − z 7→ 1− z 7→ 1− z 7→ 1

1− z =
1− z
|1− z|2

z

1

−z
1− z

1− z

1/(1− z)

173
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With this in mind, consider the following picture showing the effect of
the function f on vertical lines in the style of Section 1.3:

−2 −1 1 2

−2i

−i

i

2i

f

−2 −1 1 2

−2i

−i

i

2i

As in the previous picture, the pair of red dots represents the transfor-
mation of the point z = −1 + 2i into f(−1 + 2i) = 1

4
+ i

4
:

1

1− (−1 + 2i)
=

1

2− 2i
=

2 + 2i

(2− 2i)(2 + 2i)
=

2 + 2i

8
=

1

4
+
i

4
.

Exercise 4.1. Spend some time pondering the picture above.

(a) Check that f(−i) = 1
2
− i

2
as indicated by the pair of black dots in

the picture.
(b) Now consider a general point z = iy on the imaginary axis, so

f(iy) =
1

1− iy =
1 + iy

1 + y2
.

As y varies, do you see why f(iy) traces out the black circle on the
right hand side?

(c) Can you convince yourself that f takes vertical lines to circles, as
the picture indicates?

We now want to make contact with our study of series. To begin,
recall the convergence result established in Example 3.10: if c is a
complex number with |c| < 1, then the geometric series with common
ratio c converges:

∞∑
n=0

cn =
1

1− c.

This formula is valid for all complex numbers c in the open disc of
radius 1 centered at the origin. Notice that the expression on the right
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hand side is f(c), the value of our function at the point z = c. So the
convergence result for geometric series provides a series formula for the
function f on the restricted domain |z| < 1:

f(z) =
1

1− z =
∞∑
n=0

zn = 1 + z + z2 + z3 + · · ·

The change of notation from c to z emphasizes the shift in our focus
compared with Chapter 3: instead of focusing on individual series of
complex numbers

∑∞
n=0 c

n, we now want to focus on the series formula∑∞
n=0 z

n for the complex function f(z).
But what is the meaning of this series formula for f(z)? Recall

that the value of a convergent infinite series is given by the limit of its
partial sums, and in this case the partial sums are polynomials in the
complex variable z:

s0(z) = 1

s1(z) = 1 + z

s2(z) = 1 + z + z2

s3(z) = 1 + z + z2 + z3

...

So, the series formula f(z) =
∑∞

n=0 z
n expresses the fact that, on the

domain |z| < 1, the function f(z) can be expressed as the limit of
polynomials:

f(z) =
1

1− z = lim
m→∞

sm(z) = lim
m→∞

(1 + z + z2 + z3 + · · ·+ zm).

We would like to get a visual sense of what it means for the function
f(z) to be the limit of polynomials, and for this it will be extremely
helpful to restrict attention to real values z = x, so that we can look
at graphs of real functions. So, we now consider the real function
f(x) = 1/(1−x) and the real partial sums sm(x) = 1+x+x2+· · ·+xm.
On the domain |x| < 1, we have

f(x) =
1

1− x = lim
m→∞

sm(x) = lim
m→∞

(1 + x+ x2 + x3 + · · ·+ xm).
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Figure 4.1. The first four polynomial partial sums
sm(x) for the geometric series representation of 1/(1−x).

Figure 4.1 shows the graph of f(x) together with graphs of the first
few polynomial partial sums. We interpret the figure as follows:

• the partial sum s0(x) = 1 (lightest blue) is the best constant
approximation of f(x) = 1/(1−x) (red) near the point x = 0;
• the partial sum s1(x) = 1 + x (light blue) is the best linear
approximation: its graph is the tangent line to f(x) at x = 0;
• the next partial sum s2(x) (medium blue) appears to be the
best quadratic approximation to f(x) at x = 0;
• the degree-3 polynomial s3(x) (darkest blue) seems to be the
best cubic approximation.

To explain this terminology, recall that the tangent line to the graph
of a function f at a point c provides the best linear approximation to
the graph at c, because it shares both the value of the function f(c)

and the slope f ′(c) at that point. Generalizing this idea, the best
quadratic approximation at c will share not only the value f(c) and
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the slope f ′(c), but it will also have the same second derivative f ′′(c).
In general, when we say that the polynomial sm(x) is the best mth
degree approximation of f(x) near x = c, we mean that sm(x) not only
has the same value as f at x = c, but also the same first, second, . . . ,
mth derivatives:

sm(c) = f(c), s′m(c) = f ′(c), s′′m(c) = f ′′(c), . . . , s(m)
m (c) = f (m)(c).

Exercise 4.2. For f(x) = 1/(1 − x) and the third partial sum
s3(x) = 1 + x+ x2 + x3, verify by explicit computation that

f(0) = s3(0), f ′(0) = s′3(0), f ′′(0) = s′′3(0), f (3)(0) = s
(3)
3 (0).

Figure 4.1 helps us understand the meaning of the series formula

f(x) =
1

1− x =
∞∑
n=0

xn.

Namely, the partial sums sm(x) provide better and better approxi-
mations to the function f(x) near the point x = 0, and in the limit as
m→∞, these polynomial approximations converge to provide an exact
match for f(x) on the domain |x| < 1. Moreover, even though we can-
not easily visualize the graphs of the complex function f(z) = 1/(1−z)

and the complex partial sums sm(z), the meaning of the complex series
formula f(z) =

∑∞
n=0 z

n is the same: the complex polynomials sm(z)

provide approximations to the complex function f(z), and in the limit
as m → ∞, the polynomials converge to provide an exact match for
f(z) on the open disc |z| < 1.

Remark 4.1. Note that the domain of the function f(z) = 1/(1− z)

is larger than the domain of convergence |z| < 1 for the geometric series
formula

∑∞
n=0 z

n. Thus, while the geometric series does represent the
function f(z), it does so only on a small portion of the original domain
of f .

Based on this example, we now provide a list of questions that will
serve as a roadmap for the chapter ahead:
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(1) What are the domains of convergence for series formulas of the
type F (z) =

∑∞
n=0 anz

n, where z is a complex variable and the
coefficients an are complex numbers? Such functions are called
power series, and they are the main topic of this chapter.

(2) We know from calculus that real polynomials are nice func-
tions: they are differentiable, and their derivatives are easy
to compute term-by-term using the power rule. What about
complex polynomials?

(3) Power series are limits of polynomials, so we wonder: do the
nice properties of polynomials carry over to power series?

(4) Given a complex function G(z), is there a power series for-
mula G(z) =

∑∞
n=0 anz

n, valid on some domain in the com-
plex plane? If so, how can we find the numerical coefficients an
explicitly?

(5) Given a real function g(x), can power series help us to find
a nice complex function G(z) that extends g to the complex
plane? That is, can we find a complex function G(z) such that
G(x) = g(x) for real numbers x? We will be especially inter-
ested in extending the familiar trigonmetric functions cos(x)

and sin(x) to the complex plane, as well as the exponential
function ex.

(6) What are some applications of power series?

Key points from Section 4.1:

• The geometric series formula for f(z) = 1/(1− z):

1

1− z =
∞∑
n=0

zn, |z| < 1.

• f(z) as a limit of polynomials (Figure 4.1)
• Best mth degree polynomial approximation (page 177)
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4.2. The Radius of Convergence

We begin by giving a precise definition of the power series mentioned
in the previous section.

Definition 4.2. A power series is a series of the form
∞∑
n=0

anz
n = a0 + a1z + a2z

2 + a3z
3 + · · · .

Here, z is a complex variable, and the coefficients an are complex num-
bers. This series will generally converge for some values of z and diverge
for other values. Letting D denote the set of complex numbers z for
which the series converges, we obtain a complex function F : D → C
defined by the power series:

F (z) =
∞∑
n=0

anz
n.

Example 4.3. Generalizing the example from the previous section,
for every complex number a, the geometric series with first term a

defines a power series on the domain |z| < 1:

F (z) =
∞∑
n=0

azn = a+ az + az2 + az3 + · · · = a

1− z .

A caution about domains: the formula a/(1−z) on the right hand side
makes sense for all z 6= 1, but the series converges only on the much
smaller domain |z| < 1. As a concrete example, consider the point
z = 3. Then the right hand side makes perfect sense: a/(1−3) = −a/2.
But the left hand side is a divergent geometric series:

∞∑
n=0

a · 3n.

So: the function F (z) defined by the power series has domain |z| < 1,
even though in this special case we see how to extend the function to
a larger domain by using the formula a/(1− z) on the right hand side.

Note that geometric series define functions with especially nice do-
mains: the power series

∑∞
n=0 az

n converges on the open unit disc
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|z| < 1. In fact, the next proposition shows that all power series have
nice domains.

R

Proposition 4.4. Suppose that
∑∞

n=0 anz
n is a power series. Then

there is a real number R ≥ 0 (or R = +∞) such that the power series
is absolutely convergent for |z| < R and divergent for |z| > R.

Definition 4.5. The number R in Proposition 4.4 is called the
radius of convergence of the power series. The picture above indicates
the reason for this term: the power series converges inside the disc of
radius R.

Remark 4.6. We will prove Proposition 4.4 under the additional
assumptions that (1) the coefficients an are eventually nonzero and (2)
the magnitudes of the ratios of successive coefficients converge to a real
number L or diverge to +∞:

lim
n→∞

|an+1|
|an|

= L or lim
n→∞

|an+1|
|an|

= +∞.

These extra hypotheses are not actually necessary, but assuming them
allows us to give an easier proof that explicitly identifies the radius
of convergence as R = 1/L and avoids a more technical argument
involving completeness. Moreover, these extra hypotheses will hold for
all the examples in this course (although see Example 4.9 below for
more about the assumption (1) that the coefficients an are eventually
nonzero).
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Proof. First note that the series certainly converges (to a0) for
z = 0. So assume that |z| > 0 and use the ratio test:

lim
n→∞

|an+1z
n+1|

|anzn|
= lim

n→∞
|z| |an+1|
|an|

=

{
|z|L
+∞,

according to which case of our extra assumption (2) holds. If the ratios
diverge to +∞, then the ratio test says the power series diverges for
all nonzero z, and we take R = 0. On the other hand, if L = 0, then
the ratio test says that the power series converges absolutely for all z,
and we take R = +∞. Finally, if 0 < L < +∞, then we set R = 1/L.
In this case the ratio test says that the series converges absolutely if
|z| < R = 1/L (since then |z|L < 1) and diverges if |z| > R = 1/L

(since then |z|L > 1). �

Example 4.7. Consider the power series with coefficients an = 2n
√
n:

∞∑
n=0

2n
√
nzn = 2z + 4

√
2z2 + 8

√
3z3 + · · ·

To find the radius of convergence, we use the ratio test as in the proof
of Proposition 4.4:

lim
n→∞

|2n+1
√
n+ 1zn+1|

|2n√nzn| = lim
n→∞

2n+1

2n
·
√
n+ 1

n
· |z|

n+1

|z|n

= lim
n→∞

2 ·
√

1 +
1

n
· |z|

= 2|z| lim
n→∞

√
1 +

1

n

= 2|z|.

For the ratio test to guarantee absolute convergence, we must have
2|z| < 1 or |z| < 1/2, which tells us that the radius of convergence is
R = 1/2.

Example 4.8. Now consider the power series with factorial coeffi-
cients an = n!:

∞∑
n=0

n!zn = 1 + z + 2z2 + 6z3 + 24z4 + 120z5 + · · ·
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We use the ratio test to find the radius of convergence:

lim
n→∞

|(n+ 1)!zn+1|
|n!zn| = lim

n→∞

(n+ 1)!

n!
· |z|

n+1

|z|n
= lim

n→∞
(n+ 1) · |z|

= |z| lim
n→∞

(n+ 1)

= +∞.

Thus, the ratios diverge to +∞ for all nonzero z, so the power series
converges only for z = 0 and the radius of convergence is R = 0. This
example provides an illustration of the extremely fast growth rate of
the factorial sequence (n!). For more on that topic, see the optional
Section 3.7.

Example 4.9. Consider the power series
∞∑
n=0

(−1)n
z2n

(2n)!
= 1− z2

2
+
z4

4!
− z6

6!
+ · · ·

= 1 + 0 · z − z2

2
+ 0 · z3 +

z4

4!
+ 0 · z5 − z6

6!
+ · · ·

The coefficients are a0 = 1, a1 = 0, a2 = −1/2, a3 = 0, . . . . In partic-
ular, all the terms with odd index are zero. At first glance, it would
seem that we cannot use the ratio test to determine the radius of con-
vergence, since the ratio |an+1|/|an| is not defined for odd values of n.
But note that if we set w = z2, then we can rewrite the power series in
terms of w, with nonzero coefficients bn = (−1)n/(2n)!:

∞∑
n=0

(−1)n
z2n

(2n)!
=
∞∑
n=0

(−1)n
wn

(2n)!
.

Now we find that

lim
n→∞

|bn+1|
|bn|

= lim
n→∞

(2n)!

(2n+ 2)!
= lim

n→∞

1

(2n+ 2)(2n+ 1)
= 0.

As in the proof of Proposition 4.4, the limit L = 0 for the ratios of the
coefficients implies that R = +∞ and the series converges for all w.
But since w = z2, it follows that the original power series converges
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for all z. In this way, the ratio test can sometimes be used for series
with “missing terms” (but see the remark below for an example where
it cannot be used).

Exercise 4.3. Adapt the argument given in Example 4.9 to show
that the power series below has radius of convergence R = +∞.

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
= z − z3

3!
+
z5

5!
− z7

7!
+ · · · .

Remark 4.10. Note that Proposition 4.4 says nothing about the
behavior of a power series for |z| = R, shown as the red boundary
circle below. This boundary behavior is quite delicate, and all sorts of
things can happen: the series may converge nowhere or everywhere on
the boundary circle, or it might converge at some points and diverge
at others. Moreover, the convergence may only be conditional on the
boundary. In this course, we will mainly ignore the issue of boundary
behavior, and focus on the interior of the disc of radius R, where the
power series converges absolutely. The next example illustrates some
interesting boundary behavior.

R

Example 4.11. Consider the power series

F (z) =
∞∑
n=0

z(2
n)

2n
= z +

z2

2
+
z4

4
+
z8

8
+ · · ·
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Figure 4.2. Plots showing the effect of the power series
F (z) =

∑∞
n=0

z(2
n)

2n
on three concentric circles of radius r

centered at the origin. The red curve is the result of ap-
plying F to the circle |z| = 1, which forms the boundary
of its domain.

This series has lots of “missing terms,” and the gaps between nonzero
terms grows larger and larger. For this reason, we can’t use the method
of Example 4.9 to determine the radius of convergence. But one can
show (Problem 4.7) that the radius of convergence is R = 1, and more-
over that the series converges absolutely on the disc |z| ≤ 1. Figure 4.2
shows the effect of the power series F (z) on some circles centered at
the origin, including the boundary circle |z| = 1.

Key points from Section 4.2:

• The radius of convergence R (Definition 4.5)
• Using the ratio test to find the radius of convergence
(Examples 4.7–4.9)
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4.3. The Complex Derivative

In your first calculus course, you defined the derivative of a real
function f : R → R at a point c by using function limits: the real
function f is differentiable at c when the following limit exists:

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
.

The number f ′(c) is called the derivative of f at c.
You went on to establish many properties of differentiation, such as

the sum, product, quotient, and chain rules. In particular, you proved
that all real polynomials are differentiable, and their derivatives are
easy to compute term-by-term using the power rule:

d

dx
(a0 + a1x+ a2x

2 + · · ·+ anx
n) = a1 + 2a2x+ · · ·+ nanx

n−1.

Our aim in this section is to extend the idea of differentiation to
the complex setting, and to show that complex polynomials are also
differentiable using the power rule. In order to do this, we begin by
recasting our definition of the real derivative in terms of sequence limits
rather than function limits.

In your first calculus course, you likely discussed the limit defining
the derivative f ′(c) in the following informal way: the difference quo-
tient f(c+h)−f(c)

h
gets arbitrarily close to the number f ′(c) as the real

number h gets sufficiently close to 0. When thinking about this limit,
we can imagine h approaching zero from the left or from the right. But
no matter how h approaches zero, the corresponding difference quo-
tients must approach the same number f ′(c); this is what it means for
the function limit to exist. Figure 4.3 shows the graphical interpre-
tation of convergence from the left and from the right by displaying
secant lines converging to the tangent line for f at c.

This way of thinking—imagining all the different ways h can ap-
proach zero—suggests the following rewriting of the definition of real
differentiability in terms of sequences (hn) converging to zero:

Definition 4.12 (Sequential Definition of Real Derivative). Con-
sider a real function f(x) defined on an open interval containing the
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f(x)

c c+ hnc+ kn

Figure 4.3. Plot of the graph of a function f(x) to-
gether with its red tangent line at c and two families of
secant lines. The green secants correspond to a positive
sequence (hn) converging to zero from the right, and the
blue secants correspond to a negative sequence (kn) con-
verging to zero from the left. Differentiability of f at c
means that the slopes of the blue lines converge to the
same value as the slopes of the green lines, the common
value being the slope of the red tangent line at c.

real number c. Then f is differentiable at c if for every sequence (hn)

of nonzero real numbers converging to zero, the following limit exists
and is independent of the choice of sequence:

lim
n→∞

f(c+ hn)− f(c)

hn
.

In this case, we denote the common limit by f ′(c) and call it the de-
rivative of f at c.

Now that we have a definition for the real derivative in terms of
sequence limits, we can immediately promote it to the complex setting:
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Definition 4.13 (Sequential Definition of Complex Derivative).
Suppose that f(z) is a complex function defined on an open disc con-
taining the complex number c. Then f is differentiable at c if for every
sequence of nonzero complex numbers (hn) converging to zero, the fol-
lowing limit exists and is independent of the choice of sequence:

lim
n→∞

f(c+ hn)− f(c)

hn
.

In this case, we denote the common limit by f ′(c) or df
dz

(c) and call it
the derivative of f at c.

No matter what sequence (hn) we consider, the limit of the cor-
responding difference quotients must exist and be equal to the same
value f ′(c). Compared to the real setting, there are many more ways
to approach zero in the complex plane (see Figure 4.4), and so complex
differentiability is harder to achieve than real differentiability.

Example 4.14. Consider the squaring function f(z) = z2 and any
point c in the complex plane. We want to investigate the existence of
the derivative f ′(c). So let (hn) be any sequence of nonzero complex
numbers converging to zero, and look at the difference quotients:

f(c+ hn)− f(c)

hn
=

(c+ hn)2 − c2
hn

=
c2 + 2chn + h2n − c2

hn

=
2chn + h2n

hn
= 2c+ hn.

Having made this computation, we now take the limit:

lim
n→∞

f(c+ hn)− f(c)

hn
= lim

n→∞
(2c+ hn) = 2c+ lim

n→∞
hn = 2c.

Note the key point: the limit not only exists, but its value 2c does not
depend on the sequence (hn). This shows that f(z) = z2 is differen-
tiable at c with f ′(c) = 2c. Since this is true for all complex numbers c,



188 4. POWER SERIES

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
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Figure 4.4. The blue sequence is approaching zero from
the left along the real axis, while the green sequence is ap-
proaching from the right. The red sequence is approach-
ing from above along the imaginary axis. The pink se-
quence is approaching along a slightly curved path in the
3rd quadrant, and the black sequence is spiraling inward.

we write f ′(z) = 2z or
d

dz
(z2) = 2z.

Here is an example showing the failure of complex differentiability
for a seemingly nice function.

Example 4.15. Consider the complex conjugation function f(z) = z,
defined by f(x+iy) = x−iy. Geometrically, this is the reflection across
the real axis. Fix any complex number c, and consider the real sequence
(hn) = (1/n), which approaches zero from the right. We find that

f(c+ hn)− f(c)

hn
=
c+ 1/n− c

1/n
=
c+ 1/n− c

1/n
= 1.
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On the other hand, if we use the imaginary sequence (hn) = (i/n)

which approaches zero from above, we find

f(c+ hn)− f(c)

hn
=
c+ i/n− c

i/n
=
c− i/n− c

i/n
= −1.

Thus, the limits for these two sequences do not agree, and so complex
conjugation is not complex differentiable at any point!

Despite the lesson you might draw from the previous example, there
are many complex differentiable functions. In particular, the same
proof that you saw for the real function xm in your first calculus course
works to establish the power rule for the derivative of the complex
function zm.

Proposition 4.16 (Power Rule). For any integer m ≥ 1, the com-
plex function zm is differentiable, with derivative

d

dz
(zm) = mzm−1.

Proof. For any complex number h we have

(z + h)m = zm +mhzm−1 +

(
m

2

)
h2zm−2 + · · ·+mhm−1z + hm.

It follows that, for any sequence of nonzero complex numbers (hn)

converging to zero, the difference quotients are

(z + hn)m − zm
hn

=
mhnz

m−1 +
(
m
2

)
h2nz

m−2 + · · ·+mhm−1n z + hmn
hn

= mzm−1 +

(
m

2

)
hnz

m−2 + · · ·+mhm−2n z + hm−1n .

The key point to notice is that every term except the first in this
expression contains hn, and so converges to zero as n→∞:

lim
n→∞

(z + hn)m − zm
hn

= lim
n→∞

(
mzm−1 +

(
m

2

)
hnz

m−2 + · · ·+ hm−1n

)
= mzm−1.
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Since the limit exists and equalsmzm−1 independently of the sequence (hn),
we find that zm is differentiable with

d

dz
(zm) = mzm−1.

�

More generally, all the usual differentiation rules hold for the com-
plex derivative (the sum rule, the product rule, the quotient rule, and
the chain rule), and their proofs are basically the same as in the real
case. In particular, the derivative of a complex polynomial may be
computed by using the power rule term-by-term:

Proposition 4.17. Complex polynomials are differentiable, and
their derivatives may be computed term-by-term using the power rule:

d

dz
(a0 + a1z + a2z

2 + · · ·+ anz
n) = a1 + 2a2z + · · ·+ nanz

n−1.

Proof. This follows by combining the sum rule, the constant mul-
tiple rule, and the power rule. �

Exercise 4.4. Fill in the details in the proof of Proposition 4.17.

To illustrate the use of the chain and quotient rules, we prove the
following result that we will use later.

Proposition 4.18. Suppose that m is an integer exponent and b a
fixed complex number. Then the function f(z) = (z − b)m is complex
differentiable, with

f ′(z) = m(z − b)m−1.

Proof. First consider the case where m ≥ 0. By the chain rule
and the power rule,

f ′(z) = m(z − b)m−1(z − b)′ = m(z − b)m−1,

since (z − b)′ = 1 by the previous proposition.
Now suppose that m < 0 is negative, and set k = −m > 0. Then

the derivative of (z − b)k is k(z − b)k−1 by the nonnegative case. But
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f(z) = 1/(z − b)k, and we can use the quotient rule:

f ′(z) =
0 · (z − b)k − 1 · k(z − b)k−1

(z − b)2k

=
−k

(z − b)k+1

= m(z − b)m−1.

�

Key points from Section 4.3:

• Definition of complex derivative (Definition 4.13)
• Term-by-term differentiation of polynomials (Proposi-
tion 4.17)

4.4. Power Series as Infinite Polynomials

Now consider a power series f(z) =
∑∞

n=0 anz
n, with radius of

convergence R > 0. As discussed in Section 4.1, the partial sums are
polynomials, so the function f(z) is a limit of polynomials:

f(z) =
∞∑
n=0

anz
n = lim

n→∞
(a0 + a1z + a2z

2 + · · ·+ anz
n).

Since the function f(z) is the limit of differentiable polynomials,
it seems reasonable to expect that f(z) should be differentiable. This
is actually true for power series, although the proof is technical and
we will not give it here—it is better suited for a later course in anal-
ysis. However, in other contexts besides power series, the result may
not hold! That is, there are examples of non-differentiable functions
g(z) = limn→∞ gn(z) that are limits of differentiable functions gn(z).
Figure 4.5 indicates what can go wrong.

But in the special case of power series, the convergence of the poly-
nomial partial sums is of a good type (called uniform), and we have
the following extremely useful result:
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Figure 4.5. The upper plot shows the differentiable
functions gn(x) = e−nx

2 ; each is a smooth bell shape
of height 1, but they get narrower and narrower as n in-
creases. The lower plot shows the limit function g(x) =
limn→∞ gn(x); it is zero except at x = 0, where it has a
jump discontinuity.

Theorem 4.19. Suppose that f(z) =
∑∞

n=0 anz
n is a power series

with radius of convergence R > 0. Then the function f(z) is differ-
entiable on the open disc of radius R, and its derivative is given by
term-by-term differentiation using the power rule:

f ′(z) =
∞∑
n=0

nanz
n−1 = a1 + 2a2z + 3a3z

2 + · · · .

Moreover, the power series defining f ′(z) has the same radius of con-
vergence R.
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Example 4.20. Consider the power series from Example 4.7, which
has radius of convergence R = 1/2:

f(z) =
∞∑
n=0

2n
√
nzn = 2z + 4

√
2z2 + 8

√
3z3 + · · ·

Then the theorem says that f is differentiable on the open disc of radius
R = 1/2, with derivative

f ′(z) =
∞∑
n=0

2nn
√
nzn−1 = 2 + 8

√
2z + 24

√
3z2 + · · ·

Exercise 4.5. Check that the power series for f ′(z) in Exam-
ple 4.20 also has radius of convergence R = 1/2.

Example 4.21. Consider the power series from Exercise 4.3:

S(z) =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
= z − z3

3!
+
z5

5!
− z7

7!
+ · · · .

You showed in that exercise that the radius of convergence is R = +∞,
so the function S(z) is defined on the entire complex plane C. Using
the theorem, we find that the derivative is

S ′(z) =
∞∑
n=0

(−1)n
(2n+ 1)z2n

(2n+ 1)!
=
∞∑
n=0

(−1)n
z2n

(2n)!
,

which is the power series from Example 4.9.

Theorem 4.19 concerns the derivatives of power series, but it im-
mediately implies a result about antiderivatives.

Proposition 4.22. Suppose that f(z) =
∑∞

n=0 anz
n is a power se-

ries with radius of convergence R > 0. Consider the following power se-
ries, obtained by antidifferentiating term-by-term using the power rule:

F (z) =
∞∑
n=0

an
n+ 1

zn+1.

The power series F (z) has the same radius of convergence R, and the
function F provides an antiderivative of f on the open disc of radius R:

F ′(z) = f(z) for |z| < R.
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Proof. First suppose that the radius of convergence of F (z) is
S > 0. Then Theorem 4.19 implies that

F ′(z) =
∞∑
n=0

(n+ 1)an
n+ 1

zn =
∞∑
n=0

anz
n = f(z)

also has radius of convergence S, which means that S = R and F is an
antiderivative of f for |z| < R as claimed.

We now need to investigate the possibility that S = 0, which would
mean that the power series F (z) converges only for z = 0. But this
is impossible, for the following reason (we work under the additional
assumptions described in Remark 4.6): the radius of convergence R for
f(z) is given by R = 1/L, where

0 ≤ L = lim
n→∞

|an+1|
|an|

< +∞.

But then the radius of convergence of F (z) is given by S = 1/M , where

M = lim
n→∞

|an+1|
n+ 1

· n

|an|
= lim

n→∞

|an+1|
|an|

· n

n+ 1
= L · 1 = L < +∞.

It follows that S = 1/M = 1/L > 0 as claimed. �

Example 4.23. Consider again the power series from Example 4.7,
with radius of convergence R = 1/2:

f(z) =
∞∑
n=0

2n
√
nzn = 2z + 4

√
2z2 + 8

√
3z3 + · · ·

The previous proposition says that the following power series F (z) is
an antiderivative of f(z) on the open disc of radius R = 1/2:

F (z) =
∞∑
n=0

2n
√
n

n+ 1
zn+1 = z2 +

4
√

2

3
z3 + 2

√
3z4 + · · ·

Exercise 4.6. Verify that the antiderivative power series F (z) in
Example 4.23 has radius of convergence R = 1/2.

In addition to these nice differentiation properties, we may manipu-
late power series algebraically following the usual rules for polynomials.
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Proposition 4.24. Suppose that f(z) =
∑∞

n=0 anz
n has radius of

convergence R > 0 and g(z) =
∑∞

n=0 bnz
n has radius of convergence

S ≥ R > 0. Then

(1) the sum f(z)+g(z) may be computed term-by-term, and it has
radius of convergence ≥ R:

f(z) + g(z) =
∞∑
n=0

(an + bn)zn

= (a0 + b0) + (a1 + b1)z + (a2 + b2)z
2 + · · · .

(2) the product f(z)g(z) may be computed following the usual rule
for polynomials, and has radius of convergence ≥ R:

f(z)g(z) =
∞∑
n=0

cnz
n

= a0b0 + (a0b1 + a1b0)z + (a0b2 + a1b1 + a2b0)z
2 + · · · ,

where in general the coefficient cn is given by

cn = (a0bn + a1bn−1 + · · ·+ an−1b1 + anb0).

Remark 4.25. As the proof below will show, the formula for the
sum f(z) + g(z) holds for any z where both series converge. But the
formula for the product f(z)g(z) requires absolute convergence, and
hence can only be used safely for z inside the radius of convergence.

Proof. We will provide a proof of (1), which only requires the
limit laws for series. Part (2) is more difficult, and we will omit the
proof.

Let c be any complex number for which both power series converge.
Letting sm(z) denote the partial sums of f(z) and tm(z) denote the
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partial sums of g(z), we have

f(c) + g(c) =
∞∑
n=0

anc
n +

∞∑
n=0

bnc
n

= lim
m→∞

sm(c) + lim
m→∞

tm(c)

= lim
m→∞

(sm(c) + tm(c)) by Proposition 3.11(a)

= lim
m→∞

(a0 + a1c+ · · ·+ amc
m + b0 + b1c+ · · ·+ bmc

m)

= lim
m→∞

((a0 + b0) + (a1 + b1)c+ · · ·+ (am + bm)cm)

=
∞∑
n=0

(an + bn)cn.

Since S ≥ R, this argument is valid for all c with |c| < R, and we have

f(z) + g(z) =
∞∑
n=0

(an + bn)zn for |z| < R.

In particular, the radius of convergence of this power series is ≥ R. �

Example 4.26. We illustrate the addition and multiplication of
power series using the following two series:

f(z) =
∞∑
n=0

2nzn = 1 + 2z + 4z2 + 8z3 + · · ·
(
R =

1

2

)

g(z) =
∞∑
n=0

zn = 1 + z + z2 + z3 + · · · (S = 1).

The sum f(z) + g(z) also has radius of convergence R = 1/2:

f(z) + g(z) =
∞∑
n=0

(2n + 1)zn = 2 + 3z + 5z2 + 9z3 + · · · .

The product is given by f(z)g(z) =
∑∞

n=0 cnz
n, with coefficients

cn = 20 · 1 + 21 · 1 + 22 · 1 + · · ·+ 2n−1 · 1 + 2n · 1
= 1 + 2 + 22 + · · ·+ 2n−1 + 2n

=
1− 2n+1

1− 2

= 2n+1 − 1.



4.5. POWER SERIES RELATED TO GEOMETRIC SERIES 197

Thus, we have the following power series for the product f(z)g(z), with
radius of convergence R = 1/2:

f(z)g(z) =
∞∑
n=0

(2n+1 − 1)zn = 1 + 3z + 7z2 + 15z3 + · · · .

The results of this section may be summarized as follows: inside its
radius of convergence, we are entitled to treat a power series as an “in-
finite polynomial”: it is a differentiable function, and its derivative and
antiderivative may be computed term-by-term using the usual power
rule. Moreover, power series may be added and multiplied using the
same rules as polynomials. In the next section, we exploit these nice
features of power series to find series formulas for some familiar func-
tions.

Key points from Section 4.4:

• Term-by-term differentiation and antidifferentiation of
power series (Theorem 4.19 and Proposition 4.22)
• Addition and multiplication of power series (Proposi-
tion 4.24)

4.5. Power Series Related to Geometric Series

We have made good progress on providing answers to the first three
questions about power series listed on page 177, and it is time to move
on to question four, repeated here:

Question: Given a complex function G(z), is there a power series for-
mula G(z) =

∑∞
n=0 anz

n, valid on some domain in the complex plane?
If so, how can we find the numerical coefficients an explicitly?

In the next section we will develop a general procedure to answer
this question, applicable to all sorts of complex functions G(z). But in
this section, we begin by studying functions that are closely related to
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f(z) = 1/(1− z), the function studied in Section 4.1. Since

1

1− z =
∞∑
n=0

zn for |z| < 1,

we should be able to use the geometric series as a starting point.

Example 4.27 (Binomial Theorem for Negative Exponents). We
begin by taking deriviatives of both sides of the geometric series formula
displayed above, using the usual rules of calculus (Proposition 4.18) for
the left hand side, and treating the right hand side as an infinite poly-
nomial as explained in the previous section. Taking the first derivative
yields the formula

1

(1− z)2
=
∞∑
n=0

nzn−1 = 1 + 2z + 3z2 + · · · ,

valid for all |z| < 1. If we continue taking derivatives, we find a whole
sequence of formulas:

2

(1− z)3
=

∞∑
n=0

n(n− 1)zn−2 = 2 + 3 · 2z + 4 · 3z2 + · · ·

3 · 2
(1− z)4

=
∞∑
n=0

n(n− 1)(n− 2)zn−3 = 3 · 2 + 4 · 3 · 2z + 5 · 4 · 3z2 + · · ·

...
m!

(1− z)m+1
=

∞∑
n=0

n(n− 1) · · · (n−m+ 1)zn−m

After dividing by m!, we find that

1

(1− z)m+1
=

∞∑
n=0

n(n− 1) · · · (n−m+ 1)

m!
zn−m

=
∞∑
n=0

(
n

m

)
zn−m

= 1 +

(
m+ 1

m

)
z +

(
m+ 2

m

)
z2 + · · ·

=
∞∑
k=0

(
m+ k

m

)
zk.
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This equality holds for all |z| < 1, and it is called the binomial theo-
rem for negative integer exponents, because it generalizes the ordinary
binomial theorem:

(1+z)m =
m∑
k=0

(
m

k

)
zk = 1+

(
m

1

)
z+

(
m

2

)
z2+· · ·+

(
m

m− 1

)
zm−1+zm.

So, starting with the geometric series formula for f(z) = 1/(1− z),
we have found series formulas for the functions 1/(1− z)m+1 by taking
derivatives and using Theorem 4.19. In the next example, we instead
take an antiderivative, using Proposition 4.22.

Example 4.28 (Logarithm). We would like to take antiderivatives
of both sides of the equation

1

1− z =
∞∑
n=0

zn = 1 + z + z2 + z3 + · · · .

However, we don’t yet know an antiderivative for the complex function
1/(1 − z), and so we retreat to safety (for the moment) and restrict
attention to real values −1 < x < 1, where we have the real power
series formula

1

1− x =
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · .

Taking the antiderivatives of both sides now yields

− ln(1− x) + C =
∞∑
n=0

xn+1

n+ 1
= x+

x2

2
+
x3

3
+ · · ·

To find the constant of integration C, simply evaluate both sides at
x = 0, which shows that C = 0:

ln(1− x) = −
∞∑
n=0

xn+1

n+ 1
= −x− x2

2
− x3

3
− · · ·

We have found a power series formula for the real function ln(1−x),
valid on the open interval (−1, 1). But the same power series formula
for the complex variable z converges absolutely on the open unit disc,
and there it provides an antiderivative L(z) of the geometric series
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−∑∞n=0 z
n = −1/(1− z):

L(z) = −
∞∑
n=0

zn+1

n+ 1
= −z − z2

2
− z3

3
− · · · .

We have L′(z) = −1/(1− z) for |z| < 1, and we have found a complex
antiderivative of the complex function −1/(1− z).

Remark 4.29. Note that if we evaluate the power series L(z) at a
real number z = x, then we have

L(x) = ln(1− x) for −1 < x < 1.

That is, the power series L(z) provides a complex extension of the
familiar real function ln(1 − x) to the open unit disc in the complex
plane. This example provides a first indication of how power series are
relevant to the problem of finding complex extensions of real functions,
listed as the 5th question about power series on page 177.

Remark 4.30. If we replace x by −x in the power series represen-
tation of ln(1− x), we find an alternating series formula for ln(1 + x),
valid for −1 < x < 1:

ln(1 + x) =
∞∑
n=0

(−1)n
xn+1

n+ 1
= x− x2

2
+
x3

3
− · · · .

The absolute values of the terms are decreasing, and so we can use the
estimation method described in Example 3.38 to obtain approximations
to the values of the natural logarithm—see Example 4.57 in Section 4.9.

Moreover, it is tempting to plug in x = 1 and obtain the formula

ln(2) =
∞∑
n=0

(−1)n

n+ 1
= 1− 1

2
+

1

3
− 1

4
+ · · · ,

an equality that we wondered about at the end of Section 3.5. While
the formula is correct, we have not provided a valid derivation. Do you
see why?

Sometimes functions need to be manipulated a bit to discover a
connection to the geometric series.
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Example 4.31. Consider the complex function f(z) = z/(2 + 3z).
Observe the following bit of algebraic massaging:

f(z) =
z

2 + 3z
= z · 1

2− (−3z)
=
z

2
· 1

1− (−3
2
z)
.

Setting w = −3
2
z, we see the function 1/(1−w) on the right hand side,

and we can write this as a geometric series:

1

1− w =
∞∑
n=0

wn

=
∞∑
n=0

(
−3

2

)n
zn

=
∞∑
n=0

(−1)n
3n

2n
zn.

This formula is valid for |w| = 3
2
|z| < 1, or |z| < 2/3. Finally, we

multiply by z/2 to obtain a power series formula for the original func-
tion f(z), valid on the disc |z| < 2/3:

z

2 + 3z
=

z

2

∞∑
n=0

(−1)n
3n

2n
zn

=
∞∑
n=0

(−1)n
3n

2n+1
zn+1

=
1

2
z − 3

4
z2 +

9

8
z3 − · · · .

Sometimes a connection with the geometric series will only be re-
vealed after taking a derivative or antiderivative.

Example 4.32 (Arctangent). Consider f(x) = arctan(x), the real
arctangent function. Recall the formula for the derivative of f from
your first calculus course, and observe that it may be massaged into a
geometric series:

f ′(x) =
1

1 + x2
=

1

1− (−x2) =
∞∑
n=0

(−1)nx2n = 1− x2 + x4 − x6 + · · · .
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Figure 4.6. Plot of the arctangent function on the do-
main |x| < 1 together with the first four distinct partial
sums of its series formula.

This formula is valid for −1 < x < 1. Now take the antiderivative of
both sides to find that

f(x) + C =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
+ · · · .

Since f(0) = arctan(0) = 0, the constant of integration C = 0, and we
find that

arctan(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
+ · · · ,

with radius of convergence R = 1. Figure 4.6 shows the first few partial
sums as approximations of arctan(x) on the interval −1 < x < 1.

The complex version of this power series also has radius of conver-
gence R = 1, so it defines a complex function A(z) on the open unit
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disc, given by

A(z) =
∞∑
n=0

(−1)n
z2n+1

2n+ 1
= z − z3

3
+
z5

5
− z7

7
+ · · ·

Note that the function A(z) provides a complex extension of the real
arctangent function: for −1 < x < 1, we have A(x) = arctan(x).

Remark 4.33. In this section, we have used power series to provide
complex extensions of two familiar real functions: the natural logarithm
(Example 4.28) and arctangent (Example 4.32). The next exercise
asks you to show that these two complex functions are related in an
interesting fashion.

Exercise 4.7. Let L(z) and A(z) denote the power series from
Examples 4.28 and 4.32:

L(z) = −
∞∑
n=0

zn+1

n+ 1
= −z − z2

2
− z3

3
− · · ·

and

A(z) =
∞∑
n=0

(−1)n
z2n+1

2n+ 1
= z − z3

3
+
z5

5
− z7

7
+ · · ·

Show that for |z| < 1, we have

A(z) =
i

2

(
L(iz)− L(−iz)

)
.

Key points from Section 4.5:

• Binomial Theorem for Negative Exponents (Exam-
ple 4.27)
• Power series for the logarithm (Example 4.28)
• Manipulating a power series to discover a geometric se-
ries (Example 4.31)
• Power series for arctangent (Example 4.32)
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4.6. Maclaurin Series

So far, our power series formulas for functions have all been related
to the geometric series. But what if we want to find a power series
formula for a function like f(z) =

√
1 + z with no clear relationship

to the geometric series? To develop a strategy, we employ a common
technique of mathematical investigation: we assume that we already
have what we are looking for, and then we try to learn something about
it. So suppose that f(z) is a function, and that there is a power series
formula for f(z), valid inside some radius of convergence R > 0:

f(z) =
∞∑
n=0

anz
n = a0 + a1z + a2z

2 + a3z
3 + · · · .

First note that by Theorem 4.19, the power series on the right hand
side can be differentiated as many times as we want on the open disc
of radius R, hence the same must be true for the function f(z). So we
have learned something:

• If the function f(z) has a power series formula on a disc of
positive radius, then f(z) is infinitely differentiable on that
disc.

Moreover, using term-by-term differentiation, we see that the coef-
ficients an are completely determined by the derivatives of f at z = 0:

f(z) = a0 + a1z + · · · , so f(0) = a0

f ′(z) = a1 + 2a2z + · · · , so f ′(0) = a1

f ′′(z) = 2a2 + 3 · 2a3z + · · · , so f ′′(0) = 2a2

f ′′′(z) = 3 · 2a3 + 4 · 3 · 2a4z + · · · , so f ′′′(0) = 3 · 2a3
...

...
f (n)(z) = n!an + (n+ 1)!an+1z + · · · , so f (n)(0) = n!an
...

...

We turn this computation into a definition.

Definition 4.34 (Maclaurin Series). Suppose that f(z) is a func-
tion defined and infinitely differentiable near z = 0. The Maclaurin
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series of f is the power series with coefficients an = f (n)(0)/n!:
∞∑
n=0

f (n)(0)

n!
zn.

Remark 4.35. We emphasize that the Maclaurin coefficients an
are constants obtained by evaluating the derivatives of f at z = 0

and then dividing by factorials. A common mistake is to omit the
evaluation at zero, which leads to a more complicated expression that
is not the Maclaurin series. For instance, consider the exponential
function f(x) = ex. Then f (n)(x) = ex for all n ≥ 0, and so the
Maclaurin coefficients an are given by

an =
f (n)(0)

n!
=
e0

n!
=

1

n!
.

The Maclaurin series of ex is therefore
∞∑
n=0

anx
n =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · · .

Note how different this is from the following series, in which we
forget to evaluate the derivatives at x = 0:

∞∑
n=0

f (n)(x)

n!
xn =

∞∑
n=0

ex

n!
xn = ex + exx+ ex

x2

2!
+ ex

x3

3!
+ · · · .

In fact, this series is not even a power series, and it is certainly not the
Maclaurin series of ex.

The discussion preceding Definition 4.34 establishes the following:

• If a function f(z) has a power series formula on a disc of pos-
itive radius, then that power series must be the Maclaurin
series of f .

To make sense of the coefficients in the Maclaurin series, consider the
mth partial sum:

sm(z) = f(0) + f ′(0)z +
f ′′(0)

2!
z2 + · · ·+ f (m)(0)

m!
zm.
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This is a polynomial of degree m that has the same first m derivatives
at zero as the function f :

sm(0) = f(0), s′m(0) = f ′(0), s′′m(0) = f ′′(0), · · · , s(m)
m (0) = f (m)(0).

It follows that sm(z) is the best mth degree polynomial approximation
to f at z = 0, in the sense discussed on page 177.

We record our findings in the following strategy:

Strategy: In order to find a power series formula for a function f(z):

(1) Compute all derivatives f (n)(0) for n ≥ 0. (If f is not infinitely
differentiable, then it has no power series formula.)

(2) Write down the Maclaurin series for f and find its radius of
convergence R:

∞∑
n=0

f (n)(0)

n!
zn.

(3) Try to prove that the Maclaurin series is equal to the function
f(z) for |z| < R:

f(z) =
∞∑
n=0

f (n)(0)

n!
zn for |z| < R.

In the next example, we will employ this strategy for the function
f(z) =

√
1 + z. Before we get started, let’s be sure we understand

the meaning of this complex function. We are interested in values of z
near zero, which means that 1 + z is near 1. In particular, if |z| < 1,
then 1 + z is contained in the open disc of radius 1 centered at 1 (see
picture below). This disc does not include zero, so every number 1 + z

in the disc has two distinct square roots. Which one of these square
roots are we referencing with the function f(z) =

√
1 + z? We make

the following choice, which matches the convention from Example 1.19
in Chapter 1: each point 1 + z in the disc has polar coordinates of the
form (r, θ) with −π/2 < θ < π/2. Negative arguments correspond to
points in the bottom of the disc, positive arguments to points in the



4.6. MACLAURIN SERIES 207

top. Then f(z) =
√

1 + z is the square root with polar coordinates
(
√
r, θ/2).

1

1 + z
√

1 + z

1 + w

√
1 + w

Example 4.36. Let’s compute the Maclaurin series of the complex
function f(z) =

√
1 + z. Of course, we don’t yet actually know that

f(z) is complex differentiable, nor that the usual power rule applies if
it is differentiable. So for the moment, let’s restrict attention to real
values x, so we have f(x) =

√
1 + x. Here is the sequence of derivatives:

f(x) = (1 + x)
1
2

f ′(x) =
1

2
(1 + x)−

1
2

f ′′(x) = −1

4
(1 + x)−

3
2

f ′′′(x) =
3

8
(1 + x)−

5
2

...

f (n)(x) = (−1)n+1 (2n− 3)!!

2n
(1 + x)−

2n−1
2 for n ≥ 2.

(Here, the double factorial (2n − 3)!! indicates the product of all odd
numbers between 1 and 2n− 3.) Evaluating at x = 0 and dividing by
n! yields the coefficients an of the Maclaurin series:

a0 = 1, a1 =
1

2
, a2 = −1

8
, a3 =

1

16
, · · · , an = (−1)n+1 (2n− 3)!!

2nn!
.
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So the real Maclaurin series for f(x) =
√

1 + x is

1 +
x

2
− x2

8
+
x3

16
− · · · = 1 +

x

2
+
∞∑
n=2

(−1)n+1 (2n− 3)!!

2nn!
xn.

Here is the corresponding complex series:

1 +
z

2
+
∞∑
n=2

(−1)n+1 (2n− 3)!!

2nn!
zn.

To find the radius of convergence, we investigate the consecutive ratios:

|an+1|
|an|

=
(2n− 1)!!

2n+1(n+ 1)!
· 2nn!

(2n− 3)!!
=

2n− 1

2(n+ 1)
.

Taking the limit yields

lim
n→∞

|an+1|
|an|

= lim
n→∞

2n− 1

2(n+ 1)
= lim

n→∞

1− 1
2n

1 + 1
n

= 1 = L,

which implies that the radius of convergence is R = 1/L = 1. So the
complex Maclaurin series defines some function on the open unit disc,
but how do we know that the function is f(z) =

√
1 + z?

Figure 4.7 shows pictures of some partial sums of the real series,
which suggest that they are indeed converging to

√
1 + x. But how can

we know for sure, and what about the complex series? We could try to
check explicitly that the square of the complex series is equal to 1 + z.
This seems like a daunting computation, so we will just square each of
the first few partial sums:(

1 +
z

2

)2

= 1 + z +
z2

4(
1 +

z

2
− z2

8

)2

= 1 + z − z3

8
+
z4

64(
1 +

z

2
− z2

8
+
z3

16

)2

= 1 + z +
5z4

64
− z5

64
+

z6

256

Note that, at least in these initial cases, we have

sm(z)2 = 1 + z + terms of degree greater than m.



4.6. MACLAURIN SERIES 209

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 m=1
m=2
m=3
√1+ x

Figure 4.7. Three polynomial partial sums sm(x) for
the Maclaurin series of

√
1 + x.

Assuming that this pattern continues (it does), the full Maclaurin series
will have square equal to 1 + z. Of course, this method of verification
is very special to the function

√
1 + z, and will not work in general to

settle the question of whether or not a Maclaurin series represents its
function. In Example 4.60 in the optional Section 4.9, we will study
the functions (1 + z)p for real exponents p, and prove that they are
represented by their Maclaurin series; the square root function of this
example is the case p = 1/2.

Remark 4.37. There are examples of infinitely differentiable real
functions f(x) that are not represented by their Maclaurin series on
any interval. The standard example is

f(x) =

{
e−

1
x2 x 6= 0

0 x = 0.
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As suggested by Figure 4.8, this function is so flat at the origin that all
of its derivatives are zero: f (n)(0) = 0 for all n ≥ 0. It follows that its
Maclaurin series is the constant function 0, which does not agree with
the nonconstant function f(x) except at the single point x = 0.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

e−
1/
x2

Figure 4.8. Graph of the function f(x) = e−
1
x2 .

We now state an amazing theorem which implies that the phenom-
enon illustrated in the previous example cannot happen for complex
functions:

Theorem 4.38. If f(z) is complex differentiable in an open disc
centered at zero, then it is actually infinitely differentiable and repre-
sented by its Maclaurin series on that disc.

Proof. Take MATH 535: Complex Analysis. �

Corollary 4.39. Suppose that f(z) and g(z) are both complex
differentiable in an open disc centered at zero, and that f(x) = g(x)
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for all real x in an open interval containing zero. Then f(z) = g(z) for
all z in the open disc.

Proof. Consider the difference h(z) = f(z) − g(z), which is also
complex differentiable on the open disc, hence infinitely differentiable
by the previous theorem. Moreover, h(x) = 0 for all x in some open
interval containing zero. Since we can compute h′(x) by approaching x
along the real axis, it follows that h′(x) = 0 for all x in the open interval.
Repeating this argument, we find that the nth derivative h(n)(x) = 0

for all x near zero. In particular, h(n)(0) = 0 for all n ≥ 0, which implies
that the Maclaurin series of h is 0. But this series represents h on the
open disc by the theorem, which means that h = 0, or f(z) = g(z) for
all z in the open disc. �

This corollary forms the basis of our approach to the problem of
finding complex extensions of real functions (question (5) from page 177).
Namely: suppose that the real function f(x) is defined near zero, and
suppose that we successfully employ our Maclaurin series strategy to
find a real power series formula for f(x):

f(x) =
∞∑
n=0

anx
n for |x| < R.

Then the corresponding complex power series has the same radius of
convergence R, and so it defines a complex extension F (z) of the real
function f(x) to a disc in the complex plane:

F (z) =
∞∑
n=0

anz
n for |z| < R,

F (x) = f(x) for −R < x < R.

Moreover, the corollary implies that this is the only possible extension
that is complex differentiable.

Note that this is the method we employed to find complex ex-
tensions of the natural logarithm and arctangent functions in Exam-
ples 4.28 and 4.32. In the next section, we will use this strategy to find
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complex extensions of the real functions cos(x), sin(x), and ex.

Key points from Section 4.6:

• Definition of Maclaurin series (Definition 4.34)
• Strategy for finding power series formulas (page 206)

4.7. The Complex Exponential, Sine, and Cosine

We now employ the ideas of the previous section to derive power
series formulas for the real functions ex, cos(x), and sin(x), together
with extensions of these functions to the complex plane. For each
function f(x), we postpone the key step of the argument: showing that
the real Maclaurin series actually converges to the real function f(x).
This step will be explained carefully in the optional Section 4.8.

Example 4.40 (Exponential Function). Consider the real exponen-
tial function f(x) = ex, which is defined for all real x. For all n ≥ 0 we
have f (n)(x) = ex, so the Maclaurin coefficients are

an =
f (n)(0)

n!
=
e0

n!
=

1

n!
,

and the Maclaurin series is
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · · .

In Example 3.43, we showed that this series converges for all values of x,
and hence has radius of convergence R = +∞. Figure 4.9 shows the
first few partial sums as approximations of f(x) = ex, which suggests
(but does not prove!) that the series converges to ex.

The corresponding complex series defines a function on the entire
complex plane, called the complex exponential function:

exp(z) =
∞∑
n=0

zn

n!
.

Note that we are introducing a new symbol on the left hand side,
exp(z), which is simply our name for the function defined by the power



4.7. THE COMPLEX EXPONENTIAL, SINE, AND COSINE 213

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

5
m=0
m=1
m=2
m=3
ex

Figure 4.9. Plot of the exponential function together
with the first four partial sums of its Maclaurin series.

series on the right hand side. Once we prove (in the optional Sec-
tion 4.8) that the real Maclaurin series converges to ex, then we will
know that exp: C → C is the unique complex differentiable extension
of ex to the complex plane, thus justifying its name.

Example 4.41 (Sine). Now consider the sine function f(x) = sin(x),
also defined for all real x. We start by computing some derivatives:

f(x) = sin(x)

f ′(x) = cos(x)

f ′′(x) = − sin(x)

f (4)(x) = − cos(x)

f (5)(x) = sin(x)

...
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We see the pattern: even derivatives are ± sin(x) with the signs alter-
nating, while odd derivatives are ± cos(x) with the signs alternating.
Moreover, even integers may be written as n = 2k for some k, while
odd integers may be written as n = 2k+ 1 for some k. Putting this all
together, we find that

f (n)(x) =

{
(−1)k sin(x) if n = 2k is even
(−1)k cos(x) if n = 2k + 1 is odd.

Evaluating at x = 0 and dividing by n! yields the Maclaurin coefficients:

an =

{
0 if n = 2k is even

(−1)k/(2k + 1)! if n = 2k + 1 is odd.

The Maclaurin series is
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · .
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Figure 4.10. Plot of the sine function together with
some partial sums of its Maclaurin series.
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In Exercise 4.3, you showed that this series has radius of con-
vergence R = +∞. The corresponding complex series thus defines a
complex differentiable function on C, which we call the complex sine
function:

sin(z) =
∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
.

Once again, the symbol sin(z) on the left hand side is simply our name
for the function defined by the power series on the right hand side.
This name will be justified once we prove (in the optional Section 4.8)
that the real Maclaurin series converges to the real sine function sin(x).
Figure 4.10 shows a few partial sums as approximations of sin(x), which
provide some visual evidence for this assertion.

Exercise 4.8. (Cosine) Compute the Maclaurin series for cos(x),
and show that the complex version matches the series from Exam-
ple 4.9, with radius of convergence R = +∞:

cos(z) =
∞∑
n=0

(−1)n
z2n

(2n)!

So how can we prove that a real function f(x) is represented by
its Maclaurin series? Well, let’s see what this really means: if f(x) is
equal to its series for |x| < R, then we have

f(x) =
∞∑
n=0

anx
n = lim

m→∞
sm(x),

the limit of the polynomial partial sums sm(x). Subtracting, we find
that

0 = lim
m→∞

(
f(x)− sm(x)

)
= lim

m→∞
Rm(x) for |x| < R,

where Rm(x) = f(x)− sm(x) is the mth Maclaurin remainder of f(x).
So: in order to show that f(x) is represented by its Maclaurin series,

we need to show that for |x| < R, the sequence of remainders Rm(x)

converges to zero. For this, it would be helpful to have a result that
tells us something about the size of the remainders Rm(x) if we know
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something about the function f(x) and all of its derivatives near 0.
Taylor’s Theorem in the next section provides just what we need.

Because the proofs require Taylor’s Theorem and are a bit tech-
nical, we postpone until the next optional section the arguments that
ex, sin(x), and cos(x) are each represented by their Maclaurin series.
For the remainder of this section, we explore some remarkable rela-
tionships between the complex extensions exp(z), sin(z), and cos(z).
The next exercise is essential—be sure to complete it before you move
on.

Exercise 4.9. (Euler’s Formula) Recall the power series defining
the complex exponential, sine, and cosine as functions on the complex
plane:

exp(z) =
∞∑
n=0

zn

n!
= 1 + z +

z2

2!
+
z3

3!
+ · · ·

sin(z) =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
= z − z3

3!
+
z5

5!
− · · ·

cos(z) =
∞∑
n=0

(−1)n
z2n

(2n)!
= 1− z2

2!
+
z4

4!
− · · ·

Using these power series, show that for all complex numbers z,

exp(iz) = cos(z) + i sin(z).

This result is likely to surprise you, since your prior experience with
the exponential and trigonometric functions may not suggest much of
a connection between them. But as Jacques Hadamard observed in
1945: “It has been written that the shortest and best way between two
truths of the real domain often passes through the imaginary one.”1

1An Essay on the Psychology of Invention in the Mathematical Field (Princeton U.
Press, 1945, p. 123)
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Euler’s formula is often presented for real numbers z = y, in which
case it says that

exp(iy) = cos(y) + i sin(y).

Note that the magnitude of these numbers is always 1:∣∣exp(iy)
∣∣2 = cos2(y) + sin2(y) = 1.

Moreover, since cosine and sine each have period 2π, we find that

exp(2πin) = cos(2πn) + i sin(2πn) = 1 for all integers n.

These formulas have the following geometric interpretation: the com-
plex exponential function takes the imaginary axis and wraps it infin-
itely many times counterclockwise around the unit circle, making one
revolution every time y increases by 2π. That is, exp(iy) is the point
on the unit circle with argument θ = y (see picture below).

2πi

−2πi

iy

exp

1

y

In order to understand more about the geometry of the complex
exponential, we need to establish the complex generalization of the
familiar law of real exponents ex+y = exey.

Proposition 4.42. For any two complex numbers z and w, we
have

exp(z + w) = exp(z) exp(w).
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Proof. This follows from the multiplication of power series as in-
finite polynomials, Proposition 4.24.

exp(z) exp(w) = (1 + z +
z2

2
+
z3

3!
+ · · · )(1 + w +

w2

2
+
w3

3!
+ · · · )

= 1 + (z + w) + (
z2

2
+ zw +

w2

2
)

+ (
z3

3!
+
z2w

2
+
zw2

2
+
w3

3!
) + · · ·

= 1 + (z + w) +
z2 + 2zw + w2

2

+
z3 + 3z2w + 3zw2 + w3

3!
+ · · ·

= 1 + (z + w) +
(z + w)2

2
+

(z + w)3

3!
+ · · ·

= exp(z + w).

To see that the suggested pattern really does continue, note that for
any n ≥ 0, the part of total degree n on the right hand side will form
a sum with n+ 1 terms:

n∑
k=0

zn−kwk

(n− k)!k!
=

n∑
k=0

n!

(n− k)!k!
· z

n−kwk

n!

=
1

n!

n∑
k=0

(
n

k

)
zn−kwk

=
(z + w)n

n!
.

by the binomial theorem. �

We apply this result to x+ iy and find that

exp(x+ iy) = exp(x) exp(iy) = ex(cos(y) + i sin(y)),

where we have used Euler’s formula in the final step, together with the
(as yet unproven) assertion that exp(x) = ex. You may recognize this
from long ago in Chapter 1 as the function from Example 1.20. You
should review that example carefully now to recall the geometry of the
complex exponential function.
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Example 4.43 (de Moivre’s Formula). A nice application of Eu-
ler’s formula exp(iθ) = cos(θ) + i sin(θ) is to produce trigonometric
identities: raise each side of the formula to the nth power and use
Proposition 4.42:

exp(inθ) = (exp(iθ))n = (cos(θ) + i sin(θ))n.

But Euler’s formula says that exp(inθ) = cos(nθ) + i sin(nθ), which
yields de Moivre’s formula:

cos(nθ) + i sin(nθ) = (cos(θ) + i sin(θ))n.

Expanding the right hand side using the binomial theorem and collect-
ing the real and imaginary parts yields the multiple angle identities :

n = 2:

cos(2θ) = cos2(θ)− sin2(θ)

sin(2θ) = 2 cos(θ) sin(θ)

n = 3:

cos(3θ) = cos3(θ)− 3 cos(θ) sin2(θ)

sin(3θ) = 3 cos2(θ) sin(θ)− sin3(θ)

n = 4:

cos(4θ) = cos4(θ)− 6 cos2(θ) sin2(θ) + sin4(θ)

sin(4θ) = 4 cos3(θ) sin(θ)− 4 cos(θ) sin3(θ),

etc.

Exercise 4.10. Use de Moivre’s formula to find identities for
cos(5θ) and sin(5θ) in terms of cos(θ) and sin(θ).

At the beginning of the course we saw two advertisements for the
superiority of the complex numbers over the real numbers:

(1) The Fundamental Theorem of Algebra (Theorem 1.16): every
nonconstant complex polynomial has a complex root. The
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analogous statement is false for the real numbers, as there are
real quadratic polynomials (e.g. x2 + 1) with no real roots.

(2) Complex Dynamics (Section 2.1): our experiments with iterat-
ing complex quadratic polynomials led to a striking fractal set
in the complex plane. The corresponding set of real numbers
is just the closed interval [−2, 1/4].

Our work in this section serves as a third advertisement: whereas
the real exponential function ex seems to have no connection with
the trigonometric functions cos(x) and sin(x), the complex exponen-
tial exp(z) unifies all three into a single function displaying beauti-
ful geometry and providing a coherent explanation for some familiar
trigonometric identities. See the optional Section 5.4 of the next chap-
ter for the connection of the exponential function to a different form of
trigonometry based on the hyperbola rather than the circle.

Given how often you have encountered the real functions ex, sin(x),
and cos(x), it should come as no surprise that the complex versions are
also ubiquitous in mathematics, physics, and engineering. As exam-
ples, in Sections 5.2 and 5.3 of the next chapter, we explain how these
functions appear in the study of differential equations and oscillating
physical systems.

Key points from Section 4.7:

• Maclaurin series for exp(z), sin(z), and cos(z). (Exam-
ple 4.40, 4.41 and Exercise 4.8)
• Euler’s formula (Exercise 4.9)
• Multiplication law for exp(z) (Proposition 4.42)

4.8. Optional: Taylor Series and Taylor’s Theorem

All of our work so far has focused on the behavior of functions
near z = 0. But we may wish to investigate the behavior of functions
near an arbitrary point z = c in the complex plane. In the following
example, we illustrate by reference to the function f(z) = 1/(1− z).
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Example 4.44. Suppose we want to study the complex function
f(z) = 1/(1 − z) near the point z = 2. Note that this is outside
the domain of convergence of the geometric series

∑∞
n=0 z

n, which only
represents f(z) on the unit disc centered at 0. But we can use a different
geometric series if we massage the formula a bit:

1

1− z =
1

−1− (z − 2)

=
−1

1 + (z − 2)

=
−1

1− (−(z − 2))

= −
∞∑
n=0

(−1)n(z − 2)n

= −1 + (z − 2)− (z − 2)2 + (z − 2)3 − · · ·

This series formula is valid for |z− 2| < 1, which defines the open unit
disc centered at 2.

We now extend some our earlier concepts about power series to this
more general setting.

Definition 4.45. Suppose that c is a fixed complex number. Then
the power series centered at c with coefficients an is the following infinite
series, viewed as a function of the complex variable z:

F (z) =
∞∑
n=0

an(z − c)n = a0 + a1(z − c) + a2(z − c)2 + · · ·

All of the results from Section 4.4 continue to hold for these more
general power series. In particular, every power series centered at c
has a radius of converge R ≥ 0 or R = +∞. Inside the disc of radius
R centered at c, the series converges absolutely to a complex differen-
tiable function that may be differentiated and antidifferentiated term-
by-term. Moreover, we may perform addition and multiplication for
power series centered at c just as if they were “infinite polynomials.”
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Note that if the center c and the coefficients an are real numbers,
then we get a real power series centered at c, which converges absolutely
to an infinitely differentiable function on the open interval (c−R, c+R).

Example 4.46. Here is a power series centered at c = 2:
∞∑
n=1

(−1)n+1

n · 2n (z − 2)n =
1

2
(z − 2)− 1

8
(z − 2)2 +

1

24
(z − 2)3 − · · ·

To find the radius of convergence, we use the ratio test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

n · 2n
(n+ 1) · 2n+1

= lim
n→∞

1

2
· n

n+ 1
=

1

2
= L.

The ratio test guarantees absolute convergence for |z − 2| < 1/L = 2,
so the radius of convergence is R = 2.

Definition 4.47 (Taylor Series). Suppose that f(z) is a complex
function defined and infinitely differentiable near z = c.

(1) The Taylor series of f at c is the power series centered at c
with coefficients an = f (n)(c)/n!:

∞∑
n=0

f (n)(c)

n!
(z − c)n.

(2) The mth partial sum of the Taylor series is called the mth
Taylor polynomial for f at c:

Tm(z) = f(c) + f ′(c)(z − c) +
f ′′(c)

2
(z − c)2 + · · ·+ f (m)(c)

m!
(z − c)m.

As before, the polynomial Tm(z) is the best mth degree ap-
proximation to f(z) at z = c, in the sense that T (k)

m (c) = f (k)(c)

for 0 ≤ k ≤ m.
(3) The mth Taylor remainder of f at c is the difference between

the function f(z) and the mth Taylor polynomial:

Rm(z) = f(z)− Tm(z).

If f(x) is instead a real function defined and infinitely differentiable
near the real number x = c, then these same definitions yield the real
Taylor series, polynomials, and remainders for f at c.



4.8. OPTIONAL: TAYLOR SERIES AND TAYLOR’S THEOREM 223

Example 4.48. Consider the real function f(x) = ln(x) near the
point c = 2. Here is the sequence of derivatives:

f ′(x) =
1

x

f ′′(x) = − 1

x2

f ′′′(x) =
2

x3

f (4)(x) = −3 · 2
x4

...

f (n)(x) = (−1)n+1 (n− 1)!

xn
.

Evaluating at x = 2 and dividing by n! yields the the Taylor coeffi-
cients an:

a0 = f(2) = ln(2), an =
f (n)(2)

n!
= (−1)n+1 (n− 1)!

n! · 2n =
(−1)n+1

n · 2n .

Thus, the Taylor series of f at c = 2 is basically the series from Exam-
ple 4.46:

ln(2) +
∞∑
n=1

(−1)n+1

n · 2n (x− 2)n.

We are interested in showing that particular real functions f(x) are
represented by their Taylor series near x = c. As discussed on page 215
for Maclaurin series, we need to show that the Taylor remainders Rm(x)

converge to zero as m→∞ for all x near c. We repeat the logic here:
to say that

f(x) =
∞∑
n=0

an(x− c)n = lim
m→∞

Tm(x) (|x− c| < R)

is equivalent to saying that

lim
m→∞

Rm(x) = lim
m→∞

(f(x)−Tm(x)) = f(x)− lim
m→∞

Tm(x) = 0 (|x−c| < R).

The following important theorem provides just the tool we need, namely
information about the remainders Rm(x) in terms of the derivatives of f
near x = c.
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Theorem 4.49 (Taylor’s Theorem). Suppose that the real func-
tion f(x) is (m + 1)-times continuously differentiable on the open in-
terval (c− R, c+ R). Then for each x with |x− c| < R, there exists a
point x̃ between c and x such that

Rm(x) = f (m+1)(x̃)
(x− c)m+1

(m+ 1)!

(Note that the point x̃ depends on x.)

Before proving Taylor’s Theorem, we show how to use it.

Example 4.50 (Exponential). Consider the real exponential func-
tion f(x) = ex, and the point c = 0. Then the Taylor series at c = 0 is
the Maclaurin series computed in Example 4.40:

∞∑
n=0

xn

n!

We will use Taylor’s Theorem to show that the remainders Rm(x) con-
verge to zero as m → ∞ for all x. Note that f(x) = ex does satisfy
the necessary hypotheses, as f is infinitely differentiable on R, with
f (n)(x) = ex for all n ≥ 0. So fix x and m, and look at the conclusion
of Taylor’s Theorem:

Rm(x) = ex̃
xm+1

(m+ 1)!
.

Here, x̃ is some unknown real number with |x̃| ≤ |x|. In particular,
ex̃ ≤ e|x|, and so we have

|Rm(x)| ≤ e|x|
|x|m+1

(m+ 1)!
.

By Lemma 3.44 (with c = |x|) the right hand side converges to zero as
m → ∞. Hence, we have shown that limm→∞Rm(x) = 0. It follows,
at long last, that the real exponential function is represented by its
Maclaurin series for all real x:

ex =
∞∑
n=0

xn

n!
.
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Example 4.51 (Sine). Consider the sine function sin(x). Again,
fix x and m and examine the conclusion of Taylor’s Theorem:

Rm(x) =

 (−1)k sin(x̃) x2k

(2k)!
if m = 2k − 1 is odd

(−1)k cos(x̃) x2k+1

(2k+1)!
if m = 2k is even.

Here, x̃ is an unknown real number with |x̃| ≤ |x|. But both sine and
cosine are bounded by 1 in absolute value, so we find that

|Rm(x)| ≤


|x|2k
(2k)!

if m = 2k − 1 is odd
|x|2k+1

(2k+1)!
if m = 2k is even.

Both of the sequences on the right hand side converge to zero by
Lemma 3.44. It follows that sin(x) is represented by its Maclaurin
series for all real x:

sin(x) =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

Exercise 4.11. (Cosine) Use Taylor’s Theorem to show that cos(x)

is represented by its Maclaurin series for all real x.

Example 4.52 (Logarithm). As a final example, we use Taylor’s
Theorem to show that f(x) = ln(x) is represented by its Taylor series
near c = 2. We computed the Taylor series in Example 4.48:

ln(2) +
∞∑
n=1

(−1)n+1

n · 2n (x− 2)n.

This power series has radius of converge R = 2, but we will only show
that it converges to ln(x) for |x− 2| < 1.
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So fix m and a point x with |x−2| < 1. Then by Taylor’s Theorem
there is a point x̃ between 2 and x such that∣∣Rm(x̃)

∣∣ =

∣∣∣∣∣f (m+1)(x̃)
(x− 2)m+1

(m+ 1)!

∣∣∣∣∣
=

m!

|x̃|m+1 ·
|x− 2|m+1

(m+ 1)!

≤ 1

(m+ 1)|x̃|m+1 .

Now note that either 1 < x ≤ x̃ ≤ 2 or 2 ≤ x̃ ≤ x < 3. In either case
we have |x̃| > 1, which implies that∣∣Rm(x)

∣∣ ≤ 1

(m+ 1)|x̃|m+1 <
1

m+ 1
,

and the right hand side converges to zero as m → ∞. It follows that
limm→∞Rm(x) = 0, so that

ln(x) = ln(2) +
∞∑
n=1

(−1)n+1

n · 2n (x− 2)n for |x− 2| < 1.

To conclude this section, we provide a proof of Taylor’s Theorem.
The proof requires the following two results, which should be familiar
from your first calculus course:

Theorem 4.53 (Intermediate Value Theorem). Suppose that the
real function f : [a, b]→ R is continuous on the closed interval [a, b].
Moreover, suppose that r is a real number between f(a) and f(b). Then
there exists a point x̃ in [a, b] such that f(x̃) = r.

Theorem 4.54 (Extreme Value Theorem). Suppose that the real
function f : [a, b]→ R is continuous on the closed interval [a, b]. Then f
achieves a maximum and a minimum on [a, b]. That is, there exist
points t1 and t2 in [a, b] such that for all t in [a, b] we have

f(t) ≥ f(t1) = minimum of f on [a, b]

f(t) ≤ f(t2) = maximum of f on [a, b].
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Proof of Taylor’s Theorem. Assume that x > c (the proof
for x < c is similar, but care must be taken about signs). By the
Fundamental Theorem of Calculus, we have

f(x) = f(c) +

∫ x

c

f ′(t)dt.

Now use integration by parts with u = f ′(t) and v = t−x (so dv = dt):

f(x) = f(c) + uv|xc −
∫ x

c

vdu

= f(c)− f ′(c)(c− x)−
∫ x

c

(t− x)f ′′(t)dt

= f(c) + f ′(c)(x− c) +

∫ x

c

f ′′(t)(x− t)dt.

Repeat the integration by parts on the remaining integral, this time
with u = f ′′(t) and dv = (x− t)dt:∫ x

c

f ′′(t)(x− t)dt = uv|xc −
∫ x

c

vdu

=
f ′′(c)

2
(x− c)2 +

∫ x

c

f ′′′(t)
(x− t)2

2
dt.

Putting this together with the previous computation, we find that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 +

∫ x

c

f ′′′(t)
(x− t)2

2
dt.

Continuing to use integration by parts in the fashion, we find that

f(x) = Tm(x) +

∫ x

c

f (m+1)(t)
(x− t)m
m!

dt.

Subtracting the mth Taylor polynomial from both sides, we find an
integral expression for the mth Taylor remainder of f at c:

Rm(x) =

∫ x

c

f (m+1)(t)
(x− t)m
m!

dt.

Now note that, by assumption, f (m+1) is a continuous function, hence
it attains its minimum and maximum on the closed interval [c, x] by
the Extreme Value Theorem. Choose t1 and t2 in [c, x] such that

f (m+1)(t1) = minimum on [c, x]
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and
f (m+1)(t2) = maximum on [c, x].

It follows that

f (m+1)(t1)

∫ x

c

(x− t)m
m!

dt ≤ Rm(x) ≤ f (m+1)(t2)

∫ x

c

(x− t)m
m!

dt.

Evaluating the integrals yields

f (m+1)(t1)
(x− c)m+1

(m+ 1)!
≤ Rm(x) ≤ f (m+1)(t2)

(x− c)m+1

(m+ 1)!
.

Since f (m+1)(t) (x−c)
m+1

(m+1)!
is a continuous function of t, the Intermediate

Value Theorem implies that there is a point x̃ between t1 and t2 such
that

Rm(x) = f (m+1)(x̃)
(x− c)m+1

(m+ 1)!
.

�

Key points from Section 4.8:

• Power series centered at c (Definition 4.45)
• Taylor series, polynomials, and remainders (Defini-
tion 4.47)
• Taylor’s Theorem (Theorem 4.49)
• Using Taylor’s Theorem to show that f(x) is represented
by its Taylor series (Examples 4.50, 4.51)

4.9. Optional: Applications of Power Series

This section presents five applications of power series:

(1) The number e is irrational (Theorem 4.55)
(2) Numerical approximation of values of the natural logarithm

and other functions (Example 4.57 and Exercise 4.12)
(3) The computation of non-elementary antiderivatives (Exam-

ple 4.58)
(4) Limit computations for indeterminate forms (Example 4.59)
(5) The General Binomial Theorem (Example 4.60)
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In Example 4.50, we showed that the real exponential function ex

is represented by its Maclaurin series:

ex =
∞∑
n=0

xn

n!
.

If we plug in x = 1, we find a series expression for the number e:

e =
∞∑
n=0

1

n!
.

(In fact, this is really the definition of e, although you probably first
encountered this number in a different way.)

Theorem 4.55. The real number e =
∑∞

n=0
1
n!

is irrational.

Proof. We begin by studying the error in the partial sum approx-
imations sm:

error(m) = e− sm

=
∞∑
n=0

1

n!
−

m∑
n=0

1

n!

=
∞∑

n=m+1

1

n!

=
1

(m+ 1)!
+

1

(m+ 2)!
+

1

(m+ 3)!
+ · · ·

=
1

(m+ 1)!

(
1 +

1

m+ 2
+

1

(m+ 2)(m+ 3)
+ · · ·

)
.

Let
∑∞

k=0 ak denote the series in parentheses on the last line, with
a0 = 1 and for k ≥ 1

ak =
1

(m+ 2)(m+ 3) · · · (m+ k + 1)
.

Note that we have ak ≤ 1/(m+ 1)k for all k ≥ 0, which means that the
series

∑∞
k=0 ak is bounded by the convergent geometric series

∞∑
k=0

1

(m+ 1)k
=

1

1− 1
m+1

=
m+ 1

m
.
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Returning to the error term, we have

error(m) =
1

(m+ 1)!

∞∑
k=0

ak ≤
m+ 1

m · (m+ 1)!
=

1

m ·m!
.

Now suppose, in order to get a contradiction, that e = p
q
is a rational

number, with p, q positive integers. Moreover, replacing p and q by 2p

and 2q if necessary, we may assume that q ≥ 2. Consider the partial
sum sq, with index given by the denominator of p/q. Our computation
tells us that

e− sq = error(q) ≤ 1

q · q!
Multiplying both sides by the integer q! we find that

0 < q!(e− sq) ≤
1

q
< 1.

But note that q!sq is a positive integer:

q!sq = q!

(
1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

(q − 1)!
+

1

q!

)
= q! + q! + q(q − 1) · · · 3 + q(q − 1) · · · 4 + · · ·+ q + 1.

This implies that q!(e− sq) is also a positive integer:

q!(e− sq) = q!
p

q
− q!sq = p · (q − 1)!− q!sq.

But this is a contradiction, since there are no integers between 0 and 1.
�

Remark 4.56. In the proof of the previous theorem, we established
a bound for the error in the partial sum approximations of e:

error(m) = e− sm ≤
1

m ·m!
.

The numbers on the right hand side approach zero rapidly, so the
partial sum approximations sm are quite good even for small values
of m. For instance, taking m = 9 we find that

1

9 · 9!
≈ 3.06× 10−7 = 0.000000306.
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It follows that the partial sum s9 approximates e correctly to 5 decimal
places:

e ≈
9∑

n=0

1

n!
≈ 2.71828

As the previous remark indicates, another application of power se-
ries to to provide approximations to numbers of interest. In particular,
when we have an alternating series with decreasing term-sizes, then we
can use the technique described in Example 3.38 to estimate the sum,
with good control over the error.

Example 4.57. Suppose that we want to find an approximation
of ln(1.1), correct to 4 decimal places. Consider the Maclaurin series
representation for ln(1 + x):

ln(1 + x) =
∞∑
n=1

(−1)(n+1)x
n

n
= x− x2

2
+
x3

3
− x4

4
+ · · ·

This formula is valid for |x| < 1, and in particular at x = 0.1:

ln(1.1) = (0.1)− (0.1)2

2
+

(0.1)3

3
− (0.1)4

4
+ · · ·

Because this series is alternating with decreasing term-sizes, the error
in the mth partial sum approximation is bounded by the size of the
(m+ 1)st term. In particular, if we keep the first four terms displayed
above, then the error is at most (0.1)5/5 = 0.000002. Hence, the 4th
partial sum approximation is correct to 4 decimal places:

ln(1.1) = (0.1)− (0.1)2

2
+

(0.1)3

3
− (0.1)4

4
≈ 0.0953

Exercise 4.12. Compute a decimal approximation to arctan(0.5)

correct to two decimal places, using the Maclaurin series formula

arctan(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
+ · · · .

Our next application concerns the computation of antiderivatives.
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Example 4.58. Consider the real function f(x) = ex/x. You may
be surprised to learn that this innocent looking function has no ele-
mentary antiderivative. That is, there is no finite combination (using
addition, subtraction, multiplication, division, and composition) of fa-
miliar functions (such as polynomials, nth roots, exponentials, loga-
rithms, trigonometric or inverse trigonometric functions) with deriva-
tive equal to f(x). Nevertheless, since f(x) is a continuous function,
the Fundamental Theorem of Calculus guarantees that it does possess
an antiderivative:

F (x) =

∫ x

1

et

t
dt.

This function satisfies F (1) = 0 and F ′(x) = f(x) = ex/x for all x > 0.
As a theoretical description of the antiderivative, the integral is fine.
But for further analysis and the computation of specific values, it would
be better to have a more explicit formula, and this is where power series
come in.

Note that we can obtain a series formula for f(x) = ex/x by dividing
the Maclaurin series for ex by x:

ex

x
=

1

x

∞∑
n=0

xn

n!

=
1

x

(
1 + x+

x2

2!
+
x3

3!
+ · · ·

)

=
1

x
+ 1 +

x

2!
+
x2

3!
+ · · ·

=
1

x
+
∞∑
n=0

xn

(n+ 1)!
.

Thus, we have represented f(x) as the reciprocal function 1/x plus a
power series, and the formula is valid for all x > 0. But now we can
compute the antiderivative F (x) term-by-term:

F (x) = C + ln(x) +
∞∑
n=0

xn+1

(n+ 1) · (n+ 1)!

= C + ln(x) + x+
x2

2 · 2!
+

x3

3 · 3!
+ · · · .
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Any choice for the constant of integration C yields an antiderivative for
ex/x; if we want to obtain the particular antiderivative F (x) satisfying
F (1) = 0, we must choose C = −∑∞n=1

1
n·n! .

Now we provide an application of power series to the computation
of function limits.

Example 4.59. Consider the following limit:

lim
x→0

(
sin(x2)

x4
− cos(x)

x2

)
.

In your first calculus course you might have used L’Hôpital’s Rule mul-
tiple times for this problem. But we will use power series instead. We
begin by combining the fractions and then finding a power series for-
mula for the numerator, starting with the Maclaurin series for sin(x)

and cos(x).

sin(x2)

x4
− cos(x)

x2
=

sin(x2)− x2 cos(x)

x4
.

To understand the numerator as a power series, write

sin(x2) =
∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!
= x2 − x6

3!
+
x10

5!
− x14

7!
+ · · ·

x2 cos(x) = x2
∞∑
n=0

(−1)n
x2n

(2n)!
= x2 − x4

2!
+
x6

4!
− x8

8!
+ · · ·

Now subtract, and note that the degree-2 terms cancel:

sin(x2)− x2 cos(x) =
x4

2
−
(

1

6
+

1

24

)
x6 − x8

8!
+ · · · .

Dividing by x4, we get a power series formula for our original expression:

sin(x2)− x2 cos(x)

x4
=

1

2
− 5

24
x2 − x4

8!
+ · · · .
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Finally, we take the limit, and observe that all terms after the first on
the right hand side go to zero:

lim
x→0

(
sin(x2)− x2 cos(x)

x4

)
= lim

x→0

(
1

2
− 5

24
x2 − x4

8!
+ · · ·

)

=
1

2
.

Note that, in the final step, we have used the fact that the power series
is continuous at x = 0; this follows from the fact that it is differentiable.

Example 4.60 (General Binomial Theorem). Fix a real exponent p,
and consider the real function f(x) = (1+x)p. This function is defined
and infinitely differentiable near x = 0, with

f(x) = (1 + x)p

f ′(x) = p(1 + x)p−1

f ′′(x) = p(p− 1)(1 + x)p−2

...

f (n)(x) = p(p− 1) · · · (p− n+ 1)(1 + x)p−n

...

Evaluating at x = 0 and dividing by n! yields the coefficients of the
Maclaurin series:

a0 = 1, a1 = p, a2 =
p(p− 1)

2
, . . . , an =

p(p− 1) · · · (p− n+ 1)

n!
, . . .

Note that, in the special case p = m an integer, we have

an =
m!

n!(m− n)!
=

(
m

n

)
,

the binomial coefficient. For this reason, for arbitrary real numbers p
we define the symbol(

p

n

)
=
p(p− 1) · · · (p− n+ 1)

n!
.
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Using this notation, we find that the Maclaurin series for f(x) is given
by

∞∑
n=0

(
p

n

)
xn.

First note that if p = m ≥ 0 is a nonnegative integer, then the
series is actually a finite polynomial, equal to (1 +x)m by the ordinary
binomial theorem. So assume that m is not a nonnegative integer,
which implies that all coefficients an are nonzero. To find the radius of
convergence R, we use the ratio test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

|p(p− 1) · · · (p− n)|
|p(p− 1) · · · (p− n+ 1)| ·

n!

(n+ 1)!

= lim
n→∞

|p− n|
n+ 1

= lim
n→∞

|1− p
n
|

1 + 1
n

= 1

= L,

so R = 1/L = 1, and the series converges absolutely for |x| < 1. We
wish to show that in fact, the series converges to the original function
f(x) = (1 + x)p for |x| < 1.

At this point, all we know is that the Maclaurin series converges
to some function s(x) that is infinitely differentiable on the interval
−1 < x < 1. Moreover, the derivative of this function is

s′(x) =
∞∑
n=0

n

(
p

n

)
xn−1,
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so if we multiply by 1 + x we find that

(1 + x)s′(x) = s′(x) + xs′(x)

=
∞∑
n=0

n

(
p

n

)
xn−1 + x

∞∑
n=0

n

(
p

n

)
xn−1

=
∞∑
n=0

n

(
p

n

)
xn−1 +

∞∑
n=0

n

(
p

n

)
xn

=
∞∑
n=0

(n+ 1)

(
p

n+ 1

)
xn +

∞∑
n=0

n

(
p

n

)
xn

=
∞∑
n=0

(
(n+ 1)

(
p

n+ 1

)
+ n

(
p

n

))
xn.

Let’s investigate that complicated looking coefficient:

(n+ 1)

(
p

n+ 1

)
+ n

(
p

n

)
= (n+ 1)

p(p− 1) · · · (p− n)

(n+ 1)!
+ n

(
p

n

)
=

p(p− 1) · · · (p− n)

n!
+ n

(
p

n

)
= (p− n)

p(p− 1) · · · (p− n+ 1)

n!
+ n

(
p

n

)
= (p− n)

(
p

n

)
+ n

(
p

n

)
= p

(
p

n

)
.

Returning to the previous computation, we find that

(1 + x)s′(x) =
∞∑
n=0

p

(
p

n

)
xn = ps(x).

Now consider the function g(x) = (1 + x)−ps(x), which (being the
product of two differentiable functions) is differentiable on the interval
−1 < x < 1. We compute the derivative using first the product rule
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and then the previous computation:

g′(x) = −p(1 + x)−p−1s(x) + (1 + x)−ps′(x)

= −(1 + x)−p−1(1 + x)s′(x) + (1 + x)−ps′(x)

= −(1 + x)−ps′(x) + (1 + x)−ps′(x)

= 0.

Since the derivative of g is zero for all x, it follows that g(x) = C is a
constant function, so that s(x) = C(1 + x)p. Plugging in x = 0 reveals
that the constant C = 1, so that s(x) = (1 + x)p as expected:

(1 + x)p =
∞∑
n=0

(
p

n

)
xn.

This is the General Binomial Theorem.
We now consider the complex function F (z) defined by the same

Maclaurin series:

F (z) =
∞∑
n=0

(
p

n

)
zn.

The function F (z) is absolutely convergent on the open unit disc, where
it defines a complex differentiable function that extends the real func-
tion (1+x)p. Moreover, F (z) is the only possible complex differentiable
extension of (1 + x)p, and for this reason we denote it by (1 + z)p. In
this way, we have extended the use of arbitrary real exponents p to the
complex plane, at least for points 1 + z in the open disc of radius 1
centered at 1.

Exercise 4.13. Consider the case p = −(m + 1) < 0 a negative
exponent. Replace z by −z in the general binomial theorem, and check
that the series formula you obtain for the function 1/(1−z)m+1 matches
the one we obtained from the geometric series in Example 4.27.
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Key points from Section 4.9:

• The number e is irrational (Thm 4.55)
• Series approximation of function values (Example 4.57)
• Power series for antiderivatives (Example 4.58)
• Using power series to compute function limits (Exam-
ple 4.59)
• General Binomial Theorem (Example 4.60)

4.10. Optional: Back to the Riemann Zeta Function

We have some unfinished business from way back in Section 3.1.
There, we began our discussion of series by writing down the Riemann
zeta function:

ζ(z) =
∞∑
n=1

1

nz
= 1 +

1

2z
+

1

3z
+ . . . ,

but we immediately retreated to consideration of real inputs z = p:

ζ(p) =
∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+ . . . .

We used the integral test in Section 3.3 to show that the p-series defin-
ing ζ(p) converges for p > 1 and diverges to +∞ for p ≤ 1. We are
now ready to consider general complex inputs z to the zeta function.

For this, we need to make sense of the expression nz for n a positive
integer and z a complex number. This is an example of our complex
extension problem: we want to extend the real function f(p) = np to a
complex function F (z). We begin by looking carefully at the real case,
using the natural logarithm to rewrite the function f(p) = np in terms
of the real exponential:

f(p) = np = ep ln(n) = exp(p ln(n)).

We can now replace the real variable p with the complex variable z,
obtaining a complex function F (z):

F (z) = exp(z ln(n)).
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This function is defined for all complex z and satisfies F (p) = np for
all real numbers p. That is, F (z) is is the unique complex differen-
tiable extension of the real function f(p) = np to the complex plane.
For this reason, we write nz = F (z) = exp(z ln(n)). Note that since
exp(w) exp(−w) = exp(w − w) = exp(0) = 1, we have

1

nz
=

1

exp(z ln(n))
= exp(−z ln(n)).

With this understanding of the meaning of the terms 1/nz, we can
finally understand the definition of the Riemann zeta function:

ζ(z) =
∞∑
n=1

1

nz

=
∞∑
n=1

exp(−z ln(n))

= 1 + exp(−z ln(2)) + exp(−z ln(3)) + · · · .

To determine where this series converges, set z = x + iy, and note
that the nth term is

exp(−z ln(n)) = exp(−(x+ iy) ln(n)) = exp(−x ln(n)) exp(−iy ln(n)).

Moreover, because exp(−iy ln(n)) lies on the unit circle, the magnitude
of the nth term is ∣∣exp(−z ln(n))

∣∣ = e−x ln(n) =
1

nx
.

So the series of magnitudes is given by
∞∑
n=1

1

|nz| =
∞∑
n=1

1

nx

which converges for x > 1. Thus, the series defining the Riemann
zeta function converges absolutely for all complex z with real part
greater than 1. Figure 4.11 shows the graph of the magnitude |ζ(z)|
for z = x+iy with x > 1. The large yellow spike in the center represents
the divergence of the harmonic series.



240 4. POWER SERIES

x

1.01.52.02.53.03.54.0
4.5
5.0

y−30 −20 −10 0 10 20 30

|ζ
(z
)|

0.5

1.0

1.5

2.0

2.5

Figure 4.11. Graph of the magnitude of the Riemann
zeta function.

Note that the series formula for ζ(z) is not a power series formula:
the terms are complex exponentials exp(−z ln(n)) rather than mono-
mials anzn, and the series does not look like an “infinite polynomial.”
So our results about power series do not tell us whether ζ(z) is differen-
tiable, for instance. Although we are not in a position to prove it here,
ζ(z) is complex differentiable, and provides one of the most important
and mysterious functions in all of mathematics.

The domain of the Riemann zeta function ζ(z) may be extended
to include the entire complex plane C with the exception of the single
point z = 1 (where it diverges as the harmonic series). Actually, we
saw an elementary instance of this “expansion of the domain” in our
very first example of the geometric series. Namely, even though the
geometric series

∑∞
n=0 z

n converges only on the open disc |z| < 1, it
defines the function 1/(1 − z) on that disc, and that formula makes
sense for all z 6= 1. In a similar but more sophisticated way, ζ(z)
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extends to a function that makes sense for all z 6= 1, even though it
is no longer defined by the original series on the larger domain. This
extension method is called analytic continuation, and you will learn
about it if you take MATH 535: Complex Analysis.

The famous Riemann Hypothesis mentioned in Section 3.1 concerns
the locations of the zeros of the extended zeta function ζ(z). It turns
out that the zeta function vanishes at all negative even integers:

ζ(2n) = 0 for all integers n < 0.

These zeros are well-understood, and for that reason are called the
trivial zeros of ζ(z). But the other zeros are mysterious: it is known
that all non-trivial zeros lie in the vertical critical strip defined by
0 < Re(z) < 1. The Riemann Hypothesis is the statement that they
actually lie on the critical line defined by Re(z) = 1/2:

Riemann Hypothesis: If w is a nontrivial zero of the Riemann zeta
function, then Re(w) = 1

2
.

The import of this statement for number theory is highly non-obvious,
but may be roughly stated as follows: the prime numbers p are dis-
tributed in the “best possible way” among all the integers.

The example of the Riemann zeta function illustrates that there are
other important types of series besides power series. In particular, ζ(z)

is the most important instance of a Dirichlet series, which have the
form

∞∑
n=1

an
nz

= a1 +
a2
2z

+
a3
3z

+ · · · ,

for complex coefficients an. These series play a central role in the
subject of analytic number theory.

Trigonometric series are real series of the form
∞∑
n=0

(an cos(nθ) + bn sin(nθ)).
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Figure 4.12. Partial sums of the trigonometric series∑∞
n=1

(−1)n+1

n
sin(nθ) together with the periodic extension

f(θ) of the linear function θ/2 on the interval (−π, π).

Here, θ is a real variable and the coefficients an and bn are real. Note
that each term has period 2π, so these series define periodic functions
f : D → R, whereD is the domain of convergence. Trigonometric series
are also known as real Fourier series. Figure 4.12 shows some partial
sums of the trigonometric series

∞∑
n=1

(−1)n+1

n
sin(nθ) = sin(θ)− 1

2
sin(2θ) +

1

3
sin(3θ)− · · · ,

which seem to be converging to the function f(θ) obtained by periodic
extension of the linear function θ/2 on (−π, π).

There are also complex Fourier series, which have the following
form (where we have written einθ = exp(inθ)):

∞∑
n=−∞

cne
inθ = c0 + c1e

iθ + c−1e
−iθ + c2e

2iθ + c−2e
−2iθ + · · · .
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Here, θ is still a real variable, but the coefficients cn are complex, so
these series define complex-valued periodic functions g : D → C, where
D ⊆ R is the real domain of convergence.

The subject of Fourier analysis addresses questions similar to those
we asked about power series in this chapter:

(1) what are the domains of convergence D?
(2) are the functions defined by Fourier series differentiable?
(3) given a periodic function G(θ), can we find a Fourier series

that represents it?

The answers to these questions are all more subtle than in the case of
power series, and require a deeper study of the concept of convergence.
But the answers are well worth the effort to discover: just like power
series, Fourier series have important applications to many areas of pure
and applied mathematics, physics, and engineering.

Key points from Section 4.10:

• Meaning of the complex function nz in terms of the com-
plex exponential function (page 239)
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4.11. In-text Exercises

This section collects the in-text exercises that you should have worked
on while reading the chapter.

Exercise 4.1 Spend some time pondering the picture on page 174.
Can you convince yourself that f takes vertical lines to circles, as the
picture indicates? To get started, consider the imaginary axis z = iy.
Then

f(iy) =
1

1− iy =
1 + iy

1 + y2
.

As y varies, do you see why f(iy) traces out the black circle on the right
hand side? Investigate the other vertical lines in a similar manner.

Exercise 4.2 For f(x) = 1/(1− x) and the third partial sum s3(x) =

1 + x+ x2 + x3, verify by explicit computation that

f(0) = s3(0), f ′(0) = s′3(0), f ′′(0) = s′′3(0), f (3)(0) = s
(3)
3 (0).

Exercise 4.3 Adapt the argument given in Example 4.9 to show that
the power series below has radius of convergence R = +∞.

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
= z − z3

3!
+
z5

5!
− z7

7!
+ · · · .

Exercise 4.4 Fill in the details in the proof of Proposition 4.17.

Exercise 4.5 Check that the power series for f ′(z) in Example 4.20
also has radius of convergence R = 1/2.

Exercise 4.6 Verify that the antiderivative power series F (z) in Ex-
ample 4.23 has radius of convergence R = 1/2.

Exercise 4.7 Let L(z) and A(z) denote the power series from Exam-
ples 4.28 and 4.32:

L(z) = −
∞∑
n=0

zn+1

n+ 1
= −z − z2

2
− z3

3
− · · ·
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and

A(z) =
∞∑
n=0

(−1)n
z2n+1

2n+ 1
= z − z3

3
+
z5

5
− z7

7
+ · · ·

Show that for |z| < 1, we have

A(z) =
i

2

(
L(iz)− L(−iz)

)
.

Exercise 4.13 Consider the case p = m+ 1 < 0 a negative exponent.
Replace z by −z in the general binomial theorem, and check that the
series formula you obtain for the function 1/(1 − z)m+1 matches the
one we obtained from the geometric series in Example 4.27.

Exercise 4.8 Compute the Maclaurin series for cos(x), and show that
the complex version matches the series from Example 4.9, with radius
of convergence R =∞:

cos(z) =
∞∑
n=0

(−1)n
z2n

(2n)!

Exercise 4.9 (Euler’s Formula) Recall the power series defining the
complex exponential, sine, and cosine as functions on the complex
plane:

exp(z) =
∞∑
n=0

zn

n!
= 1 + z +

z2

2!
+
z3

3!
+ · · ·

sin(z) =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
= z − z3

3!
+
z5

5!
− · · ·

cos(z) =
∞∑
n=0

(−1)n
z2n

(2n)!
= 1− z2

2!
+
z4

4!
− · · ·

Using these power series, show that for all complex numbers z,

exp(iz) = cos(z) + i sin(z).
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Exercise 4.10 Use de Moivre’s formula to find identities for cos(5θ)

and sin(5θ) in terms of cos(θ) and sin(θ).

Exercise 4.11 Use Taylor’s Theorem to show that cos(x) is repre-
sented by its Maclaurin series for all real x.

Exercise 4.12 Compute a decimal approximation to arctan(0.5) cor-
rect to two decimal places, using the Maclaurin series formula

arctan(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
+ · · · .

Exercise 4.13 Consider the case p = −(m+ 1) < 0 a negative expo-
nent. Replace z by −z in the general binomial theorem, and check that
the series formula you obtain for the function 1/(1−z)m+1 matches the
one we obtained from the geometric series in Example 4.27.
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4.12. Problems

4.1. For each of the following, check that the polynomial p(x) is the
best mth degree approximation of f(x) near x = c, for the specified
values of m and c (see Exercise 4.2):

(a) f(x) = arctan(2x), p(x) = 2x− 8
3
x3; m = 3, c = 0

(b) f(x) = sin(x)+cos(x), p(x) = 1+x− 1
2
x2− 1

6
x3+ 1

24
x4; m = 4, c = 0

(c) f(x) = x2/3, p(x) = 1+ 2
3
(x−1)− 1

9
(x−1)2+ 4

81
(x−1)3; m = 3, c = 1

4.2. For each of the following coefficient sequences (an)n≥0, write out
the corresponding power series using both the summation notation and
the expanded + · · · form including at least 5 terms:

∞∑
n=0

anz
n = a0 + a1z + a2z

2 + a3z
3 + a4z

4 + · · ·

(a) (an) = (1)

(b) (an) =
(√

2n+1
n!

)
(c) (an) =

(
(−1)nπ2n

ln(n+2)

)
4.3. Find the radius of convergence for each of the following power
series:

(a)
∑∞

n=0

√
nzn

(b)
∑∞

n=1
2nzn

n3

(c)
∑∞

n=1 n
nzn

(d)
∑∞

n=1
zn

nn

(e)
∑∞

n=1
n3zn

3n

(f)
∑∞

n=2(−1)n zn

3n ln(n)

(g)
∑∞

n=1 5n
√
nzn

(h)
∑∞

n=0
(3n)!zn

n!(2n)!

4.4. Find the radius of convergence of the following power series:
∞∑
n=0

(n!)17

(17n)!
zn

4.5. Use the “missing terms method” illustrated in Example 4.9 to find
the radius of convergence of the following power series:

∞∑
n=2

z2n

2n(lnn)2
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4.6. Let (an) be a coefficient sequence and suppose that the limit
A = limn→∞

|an|
|an+1| exists. Determine the radius of convergence of each

of the following power series:

(a)
∑∞

n=0 anz
n

(b)
∑∞

n=0 anz
2n

(c)
∑∞

n=0 a
2
nz

n

4.7. Consider the power series:
∞∑
n=0

z(2
n)

2n
= z +

z2

2
+
z4

4
+
z8

8
+ · · ·

(a) Show that the series converges absolutely for |z| ≤ 1.
(b) Show that if |z| > 1, then the series diverges. [Hint: use the

divergence test.]

4.8. For each of the following power series, first find the radius of con-
vergence, and then compute the derivative as a power series. What is
the radius of convergence of the derivative?

(a)
∑∞

n=0 nz
n

(b)
∑∞

n=1
zn√
n

(c)
∑∞

n=1
zn

(n+1)n

(d)
∑∞

n=1
zn

n3

(e)
∑∞

n=1 n
3zn

(f)
∑∞

n=0(−1)n z
n

2n

(g)
∑∞

n=1 5nzn

4.9. For each of the power series in Problem 4.8, compute the ani-
tiderivative as a power series. What is the radius of convergence of the
antiderivative?

4.10. For each of the following functions, find a power series represen-
tation by using a geometric series expansion. Determine the radius of
convergence.

(a) 1
1+z

(b) 2
1−z3

(c) 1
z+5

(d) 1+z
1−z

(e) z2

1−z4

(f) 2z
3z2+2
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4.11. Consider the function f(z) = 3
z2+z−2 .

(a) What is the domain of f?
(b) Find constants A and B such that f(z) = A

z−1 + B
z+2

.
(c) Use part (b) to find a power series representation of f(z).
(d) What is the radius of convergence of the power series you found in

part (c)?

4.12. For each of the following real functions, find a power series rep-
resentation in two different ways: (i) by immediately using a geometric
series expansion; (ii) by recognizing the function as the derivative of
a logarithm—Example 4.28 may be helpful. Determine the radius of
convergence.

(a) −2x
1−x2

(b) x
4+x2

4.13. Fix a positive integer k ≥ 2. In this problem, you will find an
exact value for the infinite series

∑∞
n=1

n
kn

and
∑∞

n=2
n2

kn
. Recall that

Example 4.27 shows that for |z| < 1 we have
∞∑
n=1

nzn−1 =
1

(1− z)2
and

∞∑
n=1

n(n− 1)zn−2 =
2

(1− z)3
.

(a) Evaluate at z = 1
k
to find exact values for the series

∑∞
n=1

n
kn

and∑∞
n=1

n(n−1)
kn

.
(b) Now find the exact value for the series

∑∞
n=1

n2

kn
.

4.14. Use the method illustrated in Example 4.36 to compute the
Maclaurin series of the function f(x) = 3

√
2 + x. Determine the radius

of convergence.

4.15. Use the method illustrated in Example 4.36 to compute the
Maclaurin series of the function f(x) = ln(1 + x). Compare to the
result of Example 4.28.

4.16. Use the method illustrated in Example 4.36 to compute the
Maclaurin series of the function f(x) = ln(2 + 3x). Determine the
radius of convergence.
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4.17. Compute the Maclaurin series of the function f(x) = sin(πx) in
two different ways:

(a) Using the method illustrated in Example 4.36.
(b) Using the result of Example 4.41 and the fact that sin(x) is equal

to its Maclaurin series for all x.

4.18. Use the power series for ex to compute the Maclaurin series
of
√
ex.

4.19. Use the power series for the exponential function to compute the
Maclaurin series of the function f(z) = z3 exp(2z2).

4.20. This problem concerns the complex sine function sin(z), defined
by the power series in Example 4.41.

(a) Find the Maclaurin series for the function sin(z)
z

.
(b) Use your answer to part (a) to compute the limit limx→0

sin(x)
x

.
(c) Use your answer to part (a) to compute the Maclaurin series for

the function sin(z2)
z2

.
(d) Now find a power series antiderivative for the function sin(z2)

z2
.

(e) Finally, use your answer to part (d) to find an approximation to
the following definite integral, correct to 3 decimal places:∫ 1

0

sin(x2)

x2
dx.

4.21. In this problem, you will derive the following identity for the
sine and cosine functions, valid for all complex z 6= 2πm, an integer
multiple of 2π:

1

2
+ cos(z) + cos(2z) + · · ·+ cos(nz) =

sin((n+ 1
2
)z)

2 sin( z
2
)

.

(a) Show that for all complex w, we have cos(w) = 1
2

(
exp(iw) + exp(−iw)

)
.

(b) Use part (a) to show that

1

2
+ cos(z) + cos(2z) + · · ·+ cos(nz) =

1

2
exp(−inz)

2n∑
k=0

exp(ikz).
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(c) Note that the sum on the right hand side in part (b) is the partial
sum of a geometric series; use the formula

∑2n
k=0w

k = 1−w2n+1

1−w to
rewrite the expression.

(d) Now use the formula sin(w) = 1
2i

(
exp(iw)− exp(−iw)

)
to finish.

(e) Observe the following: for z = x real, we have the following identity
that makes no mention of complex numbers:

1

2
+ cos(x) + cos(2x) + · · ·+ cos(nx) =

sin((n+ 1
2
)x)

2 sin(x
2
)

.

While this statement is entirely real, the derivation makes essential
use of the complex trigonometric and exponential functions.





CHAPTER 5

APPLICATIONS TO
DIFFERENTIAL EQUATIONS

5.1. Motivation: Population Growth

Suppose we have a population of bacteria in a petri dish, and we
wish to study the number of cells in the population as time goes on.
For this purpose, we introduce an unknown function P (t) such that

P (t) = number of cells at time t.

We imagine that the experiment starts at time t = 0, when there are
some initial number P0 of cells present. The population of bacteria will
grow through the process of cell-division, and we assume that each cell
makes the same fixed contribution to the growth rate at each instant of
time. Our goal is to predict the number of cells P (t) at later times
t > 0.

Recall that the rate of change of a function is given by its derivative,
so our assumption is really about the derivative P ′(t) of the unknown
function P (t). More precisely, our assumption says that the relative

253
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growth rate P ′(t)/P (t) is a positive constant r > 0:

P ′(t)

P (t)
= r for all t ≥ 0.

In summary, we may express our assumptions about the unknown func-
tion P (t) as follows:

P ′(t) = rP (t) for all t ≥ 0, and P (0) = P0.

On the left we have a differential equation, and we seek a solu-
tion: a particular function P (t) that makes the equation true. More-
over, we want to find a solution that also satisfies the initial condition
P (0) = P0. In this case, it is easy to write down a solution explicitly:
P (t) = Cert where C is any constant. Indeed, by direct computation:

P ′(t) = (Cert)′ = Crert = rP (t).

In order the match the initial condition P (0) = P0, we must choose the
constant C = P0:

P (t) = P0e
rt.

In fact (Problem 5.1), the solution P (t) = P0e
rt is the only solution

to the differential equation satisfying the initial condition P (0) = P0.
We express this fact by saying that it is the unique solution with the
specified initial condition. So, our assumption of a constant relative
growth rate leads to the prediction that the population of bacteria will
grow exponentially.

The differential equation P ′(t) = rP (t) shows up in many different
contexts: in addition to population growth, it models certain chemi-
cal reactions as well as continuously compounded interest. And if the
constant r < 0 is negative, then it describes population decline, ra-
dioactive decay, and other phenomena. This is an instance of a fact
that we should marvel at: many seemingly unrelated physical and social
systems may be successfully modeled by a single differential equation.

Of course, in our finite world, no growth can be exponential forever,
and so we need more sophisticated assumptions to better represent the
long-term growth of real populations. The following logistic differential
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equation models a population of individuals who must compete for
resources:

P ′(t) = rP (t)− r

K
(P (t))2.

Briefly, the first term rP (t) on the right corresponds to our old assump-
tion of constant relative growth, but the second term − r

K
(P (t))2 serves

to suppress the growth rate as the population gets large. If there are
P (t) individuals at time t, then there are roughly (P (t))2 opportunities
for competitive interaction between individuals, and the assumption is
that each possible interaction decreases the growth rate by the same
constant amount r

K
. The positive constant K > 0 is called the carrying

capacity.

Exercise 5.1. Consider the logistic differential equation with rel-
ative rate r = 0.1 and carrying capacity K = 100:

P ′(t) = 0.1P (t)− 0.1

100
(P (t))2

a) By direct computation, verify that the following function is a solu-
tion satisfying the initial condition P (0) = P0:

P (t) =
P0e

0.1t

1 + P0

100
(e0.1t − 1)

b) Show that if P0 > 0, then limt→∞ P (t) = 100, so that in the long-
run, the population described by this logistic equation approaches
its carrying capacity K = 100.

Figure 5.1 shows several solutions to the logistic equation from the pre-
vious exercise (for different initial conditions P0), and compares them
to the simpler model of exponential growth.

In general, the type of story we told above about population growth
is common: in applied problems we often have an unknown function
f(t) that represents some quantity of interest, and we have some reason-
able assumptions about the relationship between f(t) and its deriva-
tives. The resulting differential equation then provides the starting
point for the study of the quantity represented by f(t). In the op-
tional Section 5.3 we present an extended example of this method for
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Figure 5.1. Graphs of some solutions P (t) to the lo-
gistic equation with relative rate r = 0.1 and carrying
capacity K = 100. Also shown for comparison is the ex-
ponential growth model ert with the same relative rate
r = 0.1.

the study of oscillating physical systems. In the remainder of this in-
troductory section, we make a few general remarks about some purely
mathematical aspects of differential equations.

To expand upon what we saw by example above, a differential equa-
tion is an equation involving an unknown function f(t) together with
some of its derivatives f ′(t), f ′′(t), . . . . Here are some examples:

(i) f ′(t) = 2f(t)

(ii) f ′(t) = −3f(t) + e−2t

(iii) f ′(t) = sin(f(t))

(iv) f ′′(t) = −4f(t)

(v) f ′′(t) + f ′(t) + f(t) = 0

A solution to a differential equation is a particular function f(t)

that makes the equation true. For instance, the equation (i) above
is an example of the population growth equation (with r = 2), and
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we have seen that for any constant C, the function f(t) = Ce2t is a
solution:

f ′(t) = (Ce2t)′ = 2Ce2t = 2f(t).

The next exercise asks you to verify some solutions to equation (iv).

Exercise 5.2. Consider the differential equation f ′′(t) = −4f(t).

a) Check that the function f(t) = cos(2t) is a solution.
b) Check that the function f(t) = 3 sin(2t) is a solution.
c) More generally, check that for all constants A,B, the following func-

tion is a solution:

f(t) = A cos(2t) +B sin(2t).

Problems 5.2 and 5.3 ask you to verify solutions to equations (ii) and
(iii), and we will study equation (v) in Examples 5.3 and 5.4.

In the exponential and logistic population examples discussed ear-
lier, we saw that we needed to specify an initial value P (0) = P0 in
order to fully determine a solution (see Figure 5.1) . In a similar way,
in each of the examples listed above, there are actually infinitely many
solutions to the differential equation:

(i) For any constant C, the function f(t) = Ce2t is a solution to
f ′(t) = 2f(t). The constant C determines the initial value of
the solution: f(0) = Ce2·0 = C.

(iv) For any constantsA,B, the function f(t) = A cos(2t)+B sin(2t)

is a solution to f ′′(t) = −4f(t). This time, the constants de-
termine the initial values of the solution f(t) and of the first
derivative f ′(t):

f(0) = A cos(2 · 0) +B sin(2 · 0) = A

f ′(0) = −2A sin(2 · 0) + 2B cos(2 · 0) = 2B.

In general:

• When a differential equation involves only the first derivative
of the unknown function f(t) (as in (i–iii) above), we expect to
obtain a family of solutions with one free constant, and making
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a specific choice for that constant allows us to obtain a solution
satisfying a given initial condition for f(t), often presented in
the form f(0) = a0 as in the population examples.
• When a differential equation involves the second derivative of
the unknown function f(t) (as in (iv–v) above), we expect
to obtain a family of solutions with two free constants, and
specific choices for these constants allow us to obtain a solu-
tion satisfying given initial conditions for f(t) and f ′(t), often
presented in the form f(0) = a0 and f ′(0) = a1.
• An important uniqueness theorem guarantees that in these
examples, there is only one solution of the equation satisfying
the specified initial conditions.

Exercise 5.3. Find the solution f(t) to the differential equa-
tion f ′′(t) = −4f(t) satisfying the initial conditions f(0) = 1 and
f ′(0) = −1.

If you take a differential equations course, you will learn more about
the existence of solutions to differential equations, and about the role
of initial conditions in specifying a unique solution. You will also learn
to identify different types of differential equations, and about special
techniques for finding explicit solutions when they exist. Finally, you
will see how differential equations arise in the social and physical sci-
ences, and learn how to use mathematical properties of the solutions
to gain insight into the original applied problems.

For all of the differential equations presented in this section, we
have been able to write down explicit formulas for solutions involving
only elementary functions. But in general, the solutions of differential
equations do not have elementary formulas, and so we need other tech-
niques to describe them—in the next section we will use power series
to find solutions. But it is the differential equation itself that is the
primary object of interest: as we saw in the population examples, a dif-
ferential equation generally represents a story about a physical, social,
or mathematical phenomenon. An existence and uniqueness theorem
will generally guarantee that there is exactly one solution satisfying
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specified initial conditions, but we have no right to expect that this so-
lution will be expressible in terms of familiar elementary functions. In
fact, many so-called special functions in pure and applied mathematics
are defined simply as solutions to certain differential equations—they
come to our attention as solutions to interesting equations, and we give
them a name in order to refer to them more easily. We will see an ex-
plicit example of such a function in Example 5.5 of the next section.

Key points from Section 5.1:

• What is a differential equation? (page 256)
• Verifying that a particular function f is a solution to
a given differential equation (Exercise 5.1 and Exer-
cise 5.2)
• What is an initial condition? (page 257, Exercise 5.3)

5.2. Series Solutions to Differential Equations

In this course, we have taken various real functions as known start-
ing points (such as ex, sin(x), and cos(x)), and then used the good
properties of power series to extend them into the complex domain.
We present an alternative point of view in this section by showing how
the complex functions (and thus the real functions as well), arise as
power series solutions to some simple differential equations. We will
also see how to find power series solutions to some differential equations
that do not have elementary solutions.

Example 5.1. Suppose that we wish to find a complex differen-
tiable function f(z) satisfying the differential equation

f ′(z) = f(z)

for all z near zero. Well, if such a function exists, then it is represented
by its Maclaurin series, f(z) =

∑∞
n=0 anz

n. Substituting this expression
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into the differential equation yields:
∞∑
n=0

nanz
n−1 =

∞∑
n=0

anz
n.

For these two series to be equal, all of the coefficients must match, and
so we find that

a1 = a0

2a2 = a1

3a3 = a2
...

nan = an−1
...

It follows that we are free to choose the constant coefficient a0, but
then all the other coefficients are determined:

a1 = a0

a2 =
a1
2

=
a0
2

a3 =
a2
3

=
a0

3 · 2
...

an =
an−1
n

=
a0
n!

...

So we see that

f(z) =
∞∑
n=0

a0
n!
zn = a0

∞∑
n=0

zn

n!
.

The constant term a0 specifies the value of f(z) at the origin (the initial
condition): f(0) = a0. Note that our derivation reveals that f(z) is
the only solution satisfying the initial condition f(0) = a0; we say that
it is the unique solution.

You should recognize this power series as the complex exponential
function, f(z) = a0 exp(z), which now forces itself upon our attention
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as the solution of the simplest of all differential equations, f ′(z) = f(z).
The next exercise asks you to generalize this example.

Exercise 5.4. Fix a complex number α and consider the differ-
ential equation f ′(z) = αf(z). Mimic Example 5.1 to show that the
unique solution satisfying the initial condition f(0) = a0 is given by
f(z) = a0 exp(αz).

Example 5.2. Now consider the differential equation f ′′(z) = f(z),
where we are looking for a solution near z = 0. Once again, we intro-
duce the Maclaurin series f(z) =

∑∞
n=0 anz

n to get information about
the unknown coefficients an:

∞∑
n=0

n(n− 1)anz
n−2 =

∞∑
n=0

anz
n.

We find that

2a2 = a0

3 · 2a3 = a1

4 · 3a4 = a2
...

n(n− 1)an = an−2
...
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In this case, we are free to choose a0 and a1, which then determine all
other coefficients:

a2 =
a0
2

a3 =
a1

3 · 2
a4 =

a2
4 · 3 =

a0
4 · 3 · 2

...

a2n =
a2n−2

2n(2n− 1)
=

a0
(2n)!

a2n+1 =
a2n−1

(2n+ 1)(2n)
=

a1
(2n+ 1)!

...

So we find that

f(z) =
∞∑
n=0

(
a0

(2n)!
z2n +

a1
(2n+ 1)!

z2n+1

)

= a0

∞∑
n=0

z2n

(2n)!
+ a1

∞∑
n=0

z2n+1

(2n+ 1)!
.

The ratio test shows that these power series have radius of convergence
R = +∞, so that the solution f(z) is defined for all complex z. We
have f(0) = a0 and f ′(0) = a1, so that these constants are the initial
values of f(z) and f ′(z). Note that taking a0 = a1 yields the solution
a0 exp(z) of the differential equation f ′(z) = f(z) from Example 5.1.

We have not previously encountered the two power series displayed
above, but they certainly define interesting functions, as they are solu-
tions to the simple differential equation f ′′(z) = f(z). Moreover, these
power series should remind you of the series for cosine and sine:

cos(z) =
∞∑
n=0

(−1)n
z2n

(2n)!
, sin(z) =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
.
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Figure 5.2. Graphs of the real functions cosh(x) and sinh(x).

So we give these new power series names, calling them the hyperbolic
cosine and hyperbolic sine functions:

cosh(z) =
∞∑
n=0

z2n

(2n)!
, sinh(z) =

∞∑
n=0

z2n+1

(2n+ 1)!
.

In this notation, the general solution of f ′′(z) = f(z) has the form

f(z) = a0 cosh(z) + a1 sinh(z).

Figure 5.2 displays graphs of the real versions of these functions, cosh(x)

and sinh(x); see the optional Section 5.4 for their connection to hyper-
bolas and trigonometry.

Exercise 5.5. Now consider the equation f ′′(z) = −f(z). Mimic
Example 5.2 to show that the unique solution satisfying f(0) = a0 and
f ′(0) = a1 is given by

f(z) = a0 cos(z) + a1 sin(z).
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Note that taking a1 = ia0 yields the solution a0 exp(iz) to the differen-
tial equation f ′(z) = if(z).

Example 5.3. Now consider the differential equation

f ′′(z) + f ′(z) + f(z) = 0.

Introducing the Maclaurin series f(z) =
∑∞

n=0 anz
n and plugging into

the differential equation yields:
∞∑
n=0

n(n− 1)anz
n−2 +

∞∑
n=0

nanz
n−1 +

∞∑
n=0

anz
n = 0.

Now collect the coefficients of each power of z:

2a2 + a1 + a0 = 0

3 · 2a3 + 2a2 + a1 = 0

4 · 3a4 + 3a3 + a2 = 0
...

n(n− 1)an + (n− 1)an−1 + an−2 = 0

...

Solving for the highest coefficient in each line reveals

a2 = −a1
2
− a0

2

a3 = −a2
3
− a1

3 · 2 =
a1

3 · 2 +
a0

3 · 2 −
a1

3 · 2 =
a0

3 · 2
a4 = −a3

4
− a2

4 · 3 = −a0
4!

+
a1
4!

+
a0
4!

=
a1
4!

a5 = −a4
5
− a3

5 · 4 = −a1
5!
− a0

5!

a6 = −a5
6
− a4

6 · 5 =
a1
6!

+
a0
6!
− a1

6!
=
a0
6!

a7 = −a6
7
− a5

7 · 6 = −a0
7!

+
a1
7!

+
a0
7!

=
a1
7!

...
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We see that the pattern goes as follows:

a3n =
a0

(3n)!

a3n+1 =
a1

(3n+ 1)!

a3n+2 = − a1
(3n+ 2)!

− a0
(3n+ 2)!

So we wish to examine the power series

f(z) =
∞∑
n=0

(
a0

(3n)!
z3n +

a1
(3n+ 1)!

z3n+1 − a0 + a1
(3n+ 2)!

z3n+2

)
.

An application of the ratio test shows that the series has radius of
convergence R = +∞, hence converges absolutely for all z. So, the
series defines the unique solution f(z) with f(0) = a0 and f ′(0) = a1.

It is not apparent whether the power series solution from Exam-
ple 5.3 can be expressed in terms of more familiar functions. This is
the blessing and the curse of the series method for solving differen-
tial equations: it will often produce the power series representation of
a solution even when no elementary formula exists, but when an ele-
mentary solution does exist, the series method may not reveal it. We
illustrate by solving the differential equation of the previous example
using a different method, that of exponential trial solutions.

Example 5.4. Once again, we consider the differential equation

f ′′(z) + f ′(z) + f(z) = 0.

This time, set f(z) = exp(αz) for an unknown complex number α, and
plug into the differential equation:

0 = f ′′(z) + f ′(z) + f(z)

= (exp(αz))′′ + (exp(αz))′ + exp(αz)

= α2 exp(αz) + α exp(αz) + exp(αz)

= (α2 + α + 1) exp(αz).
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It follows that we will have a solution if we choose α to be either root
of the polynomial z2 + z+ 1. By the quadratic formula, these roots are

α1 =
−1 +

√
3 i

2
α2 =

−1−
√

3 i

2
.

Notice that these roots are complex conjugates: α2 = α1. So we find
two solutions f1(z) = exp(α1z) and f2(z) = exp(α2z). The next ex-
ercise asks you to check that we may combine these to obtain more
solutions:

Exercise 5.6. Show that for all constants A1, A2, the function f(z)

defined below is a solution to f ′′(z) + f ′(z) + f(z) = 0:

f(z) = A1 exp(α1z) + A2 exp(α2z).

(Here, α1 and α2 are the roots of the polynomial z2 + z + 1.)

If we want to match the initial conditions f(0) = a0 and f ′(0) = a1,
we just need to choose A1 and A2 appropriately:

a0 = f(0) = A1 exp(α1 · 0) + A2 exp(α2 · 0) = A1 + A2

and

a1 = f ′(0) = A1α1 exp(α1 · 0) + A2α2 exp(α2 · 0) = A1α1 + A2α2.

Exercise 5.7. Solve the following pair of equations for A1 and A2:

A1 + A2 = a0

A1α1 + A2α2 = a1.

You should find that

A1 =
a0α2 − a1
α2 − α1

, A2 =
a0α1 − a1
α1 − α2

.

With these choices of A1 and A2, the function f(z) is a solution
to f ′′(z) + f ′(z) + f(z) = 0 with the initial conditions f(0) = a0 and
f ′(0) = a1. But the power series solution from Example 5.3 is the
unique such solution, so f(z) must be equal to that power series.
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Now let’s look at the particular initial conditions a0 = 1 and a1 = 0.
The coefficients are then

A1 =
α2

(α2 − α1)
=

1 +
√

3 i

2
√

3 i
=

1

2
− i
√

3

6

A2 = 1− A1 =
1

2
+
i
√

3

6
.

Notice that A2 = A1.
Consider the first term of the solution f(z):

A1 exp(α1z) = A1 exp

(
−z
2

+
i
√

3z

2

)

= A1 exp

(−z
2

)
exp

(
i
√

3z

2

)

= A1 exp

(−z
2

)cos

(√
3z

2

)
+ i sin

(√
3z

2

) .

And the second term:

A2 exp(α2z) = A1 exp

(
−z
2
− i
√

3z

2

)

= A1 exp

(−z
2

)
exp

(
−i
√

3z

2

)

= A1 exp

(−z
2

)cos

(√
3z

2

)
− i sin

(√
3z

2

) .

Adding these together yields the solution f(z):

f(z) = exp

(−z
2

)A1 exp

(
i
√

3z

2

)
+ A1 exp

(
−i
√

3z

2

)
= exp

(−z
2

)cos

(√
3z

2

)
+

√
3

3
sin

(√
3z

2

) .
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Figure 5.3. Plot showing the graph of the real solution

f(x) = e−x/2
(

cos
(√

3x
2

)
+
√
3
3

sin
(√

3x
2

))
to the differ-

ential equation f ′′(x) + f ′(x) + f(x) = 0.

Figure 5.3 shows the graph of the corresponding real solution obtained
by restricting to real inputs z = x. In Section 5.3 we will discuss an
interpretation of this solution in terms of oscillating physical systems.

If you take a differential equations course, you will learn more tech-
niques for finding solutions of differential equations in terms of familiar
elementary functions. But as mentioned at the end of Section 5.1, of-
ten the solutions are not expressible in terms of elementary functions,
and in those cases the series method is invaluable. The next example
provides a prominent example.

Example 5.5. Consider the differential equation

z2f ′′(z) + zf ′(z) + z2f(z) = 0.
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Note the difference from our earlier examples: the coefficients of this
differential equation (z2, z, and z2) are functions of z, rather than con-
stants. Nevertheless, we again search for a power series solution near
z = 0, and so we introduce a Maclaurin series f(z) =

∑∞
n=0 anz

n, with
currently unknown coefficients an. We begin by computing each term
of the differential equation separately:

z2f ′′(z) = z2
∞∑
n=0

n(n− 1)anz
n−2 =

∞∑
n=0

n(n− 1)anz
n

zf ′(z) = z
∞∑
n=0

nanz
n−1 =

∞∑
n=0

nanz
n

z2f(z) = z2
∞∑
n=0

anz
n =

∞∑
n=0

anz
n+2.

Now add these together to regain the differential equation:

0 = z2f ′′(z) + zf ′(z) + z2f(z)

=
∞∑
n=0

n(n− 1)anz
n +

∞∑
n=0

nanz
n +

∞∑
n=0

anz
n+2

= a1z +
∞∑
n=2

(n(n− 1)an + nan + an−2)z
n

= a1z +
∞∑
n=2

(n2an + an−2)z
n.

It follows that

a1 = 0

22a2 + a0 = 0

32a3 + a1 = 0

42a4 + a2 = 0
...

n2an + an−2 = 0

...
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Solving for the highest index term in each line:

a1 = 0

a2 = −a0
22

a3 = −a1
32

= 0

a4 = −a2
42

=
a0

(4 · 2)2

a5 = −a3
52

= 0

a6 = −a4
62

= − a0
(6 · 4 · 2)2

...

Observe the developing pattern:

• all odd terms are zero: a2n+1 = 0;
• the even terms alternate in sign;
• the denominator of a2n is the square of the product of all even
numbers between 2 and 2n:

a2n = (−1)n
a0

(2n · (2n− 2) · · · 4 · 2)2
.

We can rewrite this product of even numbers as follows:

2n · (2n− 2) · · · 4 · 2 = 2n(n · (n− 1) · · · 2 · 1) = 2n · n!.

Thus, the formula for the coefficient a2n may be written as
follows:

a2n = (−1)n
a0

22n(n!)2
.

So the power series solution is

f(z) = a0

∞∑
n=0

(−1)n
z2n

22n(n!)2
= a0(1−

z2

4
+
z4

64
− z6

2304
+ · · · ).

Now find the radius of convergence:

|a2n+2|
|a2n|

=
22n(n!)2

22n+2((n+ 1)!)2
=

1

4(n+ 1)2
→ L = 0.
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Figure 5.4. Graph of the real Bessel function J0(x).

It follows that R = +∞, and the series converges for all complex z. If
we take the solution satisfying the initial condition f(0) = a0 = 1, we
obtain the Bessel function of the first kind of order zero:

J0(z) =
∞∑
n=0

(−1)n
z2n

22n(n!)2
.

Figure 5.4 shows the graph of the corresponding real function J0(x).
Note that the series method has produced a family of solutions

with only one free constant a0 rather than the two free constants a0
and a1 that we may have expected based on the fact that the differential
equation involves the second derivative f ′′(z). In fact, there is a second
family of solutions, but they are not defined at z = 0, and hence our
series method did not discover them (these are Bessel functions of the
second kind).

The differential equation z2f ′′(z) + zf ′(z) + z2f(z) = 0 is known
as Bessel’s differential equation of order zero. More generally, for any
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nonnegative integer k ≥ 0, Bessel’s differential equation of order k is

z2f ′′(z) + zf ′(z) + (z2 − k2)f(z) = 0.

As in the case k = 0, application of the series method to this equation
yields a family of solutions with one complex parameter ak, and an
appropriate choice for ak yields Jk(z), the Bessel function of the first
kind of order k (see Problems 5.6 and 5.7).

The point of this example is the following: the Bessel functions
Jk(z) arise from the consideration of some simple differential equations,
and they appear in many areas of mathematics and physics. They are
defined by complex power series, and it is simply not possible to ex-
press them in terms of other more familiar and elementary functions.

Key points from Section 5.2:

• Series method for solving differential equations (Exam-
ples 5.1, 5.2, 5.3, 5.5)
• Method of exponential trial solutions (Example 5.4)

5.3. Optional: Oscillators and the Complex Exponential

In this section, we illustrate how some of the differential equations
from the previous section arise in the important context of oscillating
physical systems. As explained at the end of this section, the model
that we are about to introduce is ubiquitous, because it serves as a
good approximation to most physical systems near stable equilibria
(which is often where we want to study them). To begin, consider a
spring attached at one end to the wall, with the other end attached to a
moveable block of mass m (See Figure 5.5). The mass is resting on the
floor, which is covered with oil. If you pull the block away from the wall
and then let go, the stretched spring will pull the block back toward the
wall, while the friction with the oily floor tends to impede the block’s
motion. Once the block passes its original resting place the spring
will compress, pushing on the block until it stops moving toward the
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wall and starts moving away under the force of the now decompressing
spring. We expect the block to continue moving back and forth, with
the oscillations getting smaller and smaller due to the friction with the
oily floor. In this section, we will write down a mathematical model of
this setup in the form of a differential equation, and the solutions will
provide the possible motions of the block.

m

0

m

F = −kx− rx′

0 x

Figure 5.5. A block of mass m connected to the wall
by a spring with spring constant k. The floor is covered
with oil that has a friction coefficient r.

First, we must set up the notation: let x(t) denote the position of
the block at time t, with x = 0 indicating the resting position of the
block, in which the spring is at its natural length, neither compressed
nor stretched. Increasing values of x indicate motion away from the
wall. Recall that the velocity of the block is given by the derivative
x′(t), while the acceleration is given by the derivative of velocity, or
the second derivative of position: x′′(t). In the setup described above,
the block experiences two types of forces:

• a force s due to the stretched/compressed spring: we model
this as a linear function of position s(x) = −kx for a positive
spring constant k. The negative sign indicates that when x >
0, the stretched spring pulls the block back toward the wall,
while when x < 0, the compressed spring pushes the block
away from the wall. Larger values of k correspond to stiffer
springs.
• a friction force f due to the oily floor: we model this as a linear
function of velocity f(x′) = −rx′ for a positive friction coef-
ficient r. The negative sign indicates that the friction always
acts in the opposite direction of the block’s velocity, tending
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to resist its motion. Larger values of r correspond to more
viscous oil.

Now we apply Newton’s Second Law of Motion, which states that
if our block feels any type of force F , it responds by accelerating in the
direction of the force, with the block’s mass acting as the constant of
proportionality:

F = mx′′.

In our setup, the total force F = s + f is the sum of the spring force
and the friction force, and we find that

mx′′ = F = s(x) + f(x′) = −kx− rx′.

Rearranging, we obtain the following differential equation for the posi-
tion function x(t):

x′′(t) +
r

m
x′(t) +

k

m
x(t) = 0.

For convenience, we now assume that our block has mass m = 1 (which
just amounts to adjusting our units), so we can write our equation as

x′′(t) + rx′(t) + kx(t) = 0.

Even though we are looking for a real function x(t), we begin by plug-
ging in the complex trial solution z(t) = exp(αt), using an unknown
complex constant α. We proceed as in Example 5.4:

0 = z′′(t) + rz′(t) + kz(t)

= (exp(αt))′′ + r(exp(αt))′ + k exp(αt)

= α2 exp(αt) + rα exp(αt) + k exp(αt)

= (α2 + rα + k) exp(αz).

We find that we will have a solution provided that α is a root of the
quadratic polynomial w2 +rw+k. By the quadratic formula, the roots
are

α1 =
−r +

√
r2 − 4k

2
and α2 =

−r −
√
r2 − 4k

2
.

There are several cases to consider:
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• (d = r2 − 4k > 0) This is the “viscous oil and weak spring”
regime, where α2 < α1 < 0 are negative real numbers.
• (d = r2 − 4k < 0) This is the “non-viscous oil and strong
spring” regime, where α1 6= α2 are complex conjugate complex
numbers.
• (d = r2 − 4k = 0) This is the “critical damping” regime where
there is only a single real root α1 = α2 = −r/2.

We begin by assuming r2 6= 4k, so we have two distinct roots α1 6=
α2. Then the most general complex solution looks like

z(t) = A1 exp(α1t) + A2 exp(α2t),

where the coefficients must be chosen to match the desired initial condi-
tions z(0) = a0 and z′(0) = a1. As in Example 5.4, we will consider the
initial conditions z(0) = 1 and z′(0) = 0, which correspond to stretch-
ing the block a unit distance away from its resting location, holding the
block steady, and then letting go at time t = 0, so that the block starts
with an initial velocity of zero. To achieve these initial conditions, we
must have (Problem 5.5)

A1 =
α2

α2 − α1

=
r +
√
d

2
√
d

=
1

2
+
r
√
d

2d
.

and

A2 = 1− A1 =
1

2
− r
√
d

2d
.

In the d > 0 regime, all of these quantities are real, and we see
immediately that the real solution is

x(t) = A1e
α1t + A2e

α2t.

Both terms are decaying exponentials, with the second having a faster
rate of decay. Figure 5.6 shows the graph of this solution for the case
r = 3 and k = 1. There is no oscillation: the oil is so viscous compared
to the spring strength that the block just slides back to zero. This
phenomenon is called overdamping.
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Figure 5.6. Graph of an overdamped oscillator, with
r = 3 and k = 1.

Now consider the d < 0 regime, where all quantities are complex.
Generalizing Example 5.4 (see Problem 5.5), the real solution is

x(t) = exp

(−rt
2

)cos

(√
|d| t
2

)
+
r
√
|d|
|d| sin

(√
|d| t
2

) .

Figure 5.7 shows the graph of this solution for r = 1 and k = 10. Here
we see the expected oscillation, decaying over time due to the friction
with the oily floor. This phenomenon is called underdamping.

It remains to consider the case of critical damping, were d = 0 and
there is a single real root α1 = α2 = −r/2. In this case, we find only one
family of solutions A1 exp(− rt

2
). But we cannot choose the constant A1
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Figure 5.7. Graph of an underdamped oscillator, with
r = 1 and k = 10.

so as to achieve the initial conditions x(0) = 1 and x′(0) = 0. Luckily,
we can check that t exp(− rt

2
) is another solution.

Exercise 5.8. Show by direct computation that x(t) = t exp(− rt
2

)

is a solution to the critically damped oscillator differential equation

x′′(t) + rx′(t) +
r2

4
x(t) = 0.

So now the general solution looks like

x(t) = A1 exp

(
−rt

2

)
+ A2t exp

(
−rt

2

)
,

and we wish to choose A1 and A2 to satisfy the initial conditions.
Setting 1 = x(0) = A1 determines the first coefficient, and then

0 = x′(0) = −r
2

+ A2
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implies that A2 = r
2
. The corresponding solution is thus

x(t) = e−
rt
2 +

rt

2
e−

rt
2 = e−

rt
2

(
1 +

rt

2

)
.

The graph of this solution for r = 2 and k = 1 is shown in Figure 5.8.
The term critically damped refers to the fact that this exact combina-
tion of friction r and spring-stiffness k results in the fastest possible
damping of the oscillator: any deviation from the critical point r2 = 4k

will yield either oscillations (underdamped) or a slower slide across the
oily floor (overdamped). Because of this optimal behavior for damping
unwanted vibrations, the phenomenon of critical damping is important
for many engineering applications.
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0.8
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x(
t)

Figure 5.8. Graph of a critically damped oscillator,
with r = 2 and k = 1.

Now, you may be wondering how important these oscillator differ-
ential equations can possibly be. Indeed, you are not likely to encounter
many physical systems manufactured out of springs and oil as described
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above. But miraculously, the same differential equations govern the be-
havior of many physical systems that seem initially to have nothing in
common with springs and oil. As a prominent example, when those of
you studying physics take an electronics course, you will discover that
these same equations describe the behavior of RLC circuits, consisting
of a resistor, an inductor, and a capacitor connected in series or in
parallel.

An important special case of the oscillator equation comes from set-
ting the friction coefficient r = 0; this corresponds to a frictionless floor
(think of an air-hockey table). In this case, the differential equation
becomes (reinstating the mass m, which we previously set to m = 1):

z′′(t) +
k

m
z(t) = 0.

This undamped oscillator is in the underdamped regime, with real so-
lution (still using the initial conditions x(0) = 1 and x′(0) = 0):

x(t) = cos (ωt) with ω =

√
k

m
.

Figure 5.9 shows the graph of this familiar solution: there is no decay,
and the oscillations repeat with period 2π/ω = 2π

√
m
k
. This behavior

is called simple harmonic motion. In particular, we see that increasing
the mass leads to slower oscillations, while stiffening the spring leads
to quicker ones.

The simple harmonic oscillator equation x′′(t) + ω2x(t) = 0 and
the resulting simple harmonic motion are of universal importance in
physics, and we can understand why by applying the theory of Taylor
polynomials to a general 1-dimensional physical problem. Here is the
setup: suppose that we have a particle of mass m moving along the
x-axis due to the presence of a force F (x) that varies with the location
of the particle. By Newton’s Second Law, the particle experiences an
acceleration given by

x′′(t) =
1

m
F (x(t)).

At this point, the force F (x) is quite general, and we want to keep it
that way. But let us at least assume that F (x) is a continuous function,
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Figure 5.9. Graph of undamped oscillator, with con-
stants k = m = 1.

which means that it has an antiderivative. In fact, we will introduce
an antiderivative for −F (x) and call it the potential function V (x):

V ′(x) = −F (x).

(Note that, given the force F (x), the potential V (x) is determined only
up to an additive constant.)

Now step back for a minute, and think about the stability of the
world around you: there are many small objects in your immediate
vicinity, and most of them don’t seem to be moving very much. More-
over, if they do move a bit, they often tend to come back to where
they started, perhaps rocking or rolling around for a while. Think, for
example, of a grape sitting at the bottom of an otherwise empty fruit
bowl. Of course, if you slam your hand into the grape, it may fly out
of the bowl. But if you only nudge it a bit, then it will roll around only
slightly, the walls of the bowl combined with gravity forcing it back
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x
c

V

Figure 5.10. The point c is a stable equilibrium for the
potential function V (x) (shown in blue), with quadratic
Taylor polynomial T2(x) (shown in red).

toward the center. So: we are often interested in studying particles at
locations where the force on them is zero, and near which they experi-
ence small forces that push them back toward their starting point . . . we
call such points stable equilibria. Let’s think about what the graph of
the potential function V (x) looks like near a stable equilibrium at x = c

(see Figure 5.10):

• First of all, we can subtract a constant from the potential to
ensure that V (c) = 0.
• There is no force at x = c, so 0 = F (c) = −V ′(c), and the
graph of V (x) has a horizontal tangent line at x = c.
• The forces near x = c tend to push the particle back toward c,
so 0 < F (x) = −V ′(x) for x < c and 0 > F (x) = −V ′(x)

for x > c. Thus we see that V ′(x) is negative to the left of c
and positive to the right of c. By the first derivative test, the
function V (x) has a local minimum at x = c.
• If we also assume that the second derivative of V exists and
is continuous, then we can apply the second derivative test to
conclude that V ′′(c) ≥ 0.

Now consider the quadratic Taylor polynomial T2(x) for the poten-
tial V (x) at c:

T2(x) = V (c) + V ′(c)(x− c) +
V ′′(c)

2
(x− c)2 =

ω2

2
(x− c)2,
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where we have introduced the nonnegative constant ω =
√
V ′′(c). Re-

call that this is the best quadratic approximation to the function V (x)

near the stable equilibrium x = c.
Depending on the exact nature of the potential V (x), the Taylor

polynomial T2(x) may or may not be a good approximation near x = c.
But in most cases, the potential V (x) is actually equal to its Taylor
series near c, and moreover V ′′(c) is nonzero (so that ω > 0). In this
case, the quadratic approximation is often quite good, in which case
we can approximate the particle’s motion by using the potential

Ṽ (x) = T2(x) =
ω2

2
(x− c)2,

and this yields an approximate force F̃ (x) = −Ṽ ′(x) = −ω2(x − c).

Now return to Newton’s Second Law with these approximations:

x′′(t) =
1

m
F̃ (x(t)) = −ω2(x(t)− c).

Making the change of variable u = x− c (which just amounts to trans-
lating the origin), we find that u′′(t) = x′′(t), and so

u′′(t) + ω2u(t) = 0,

which is the simple harmonic oscillator equation. This means that the
solution u(t) describes simple harmonic motion about the origin, or
equivalently, that x(t) = u(t) + c describes simple harmonic motion
about the stable equilibrium x = c. In summary: to second-order ap-
proximation, all particles exhibit simple harmonic motion near a stable
equilibrium. This wonderful fact accounts for the ubiquity of the simple
harmonic oscillator, and makes it the most important piece of physics
that you will ever learn.
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Key points from Section 5.3:

• The damped oscillator equation x′′ + r
m
x′ + k

m
x = 0

(page 274)
• Overdamping, underdamping, and critical damping
(pages 274–278)
• The ubiquity of simple harmonic motion (pages 279–
282)

5.4. Optional: Hyperbolic Trigonometry

In Example 5.2, we introduced two power series as solutions to the
differential equation f ′′(z) = f(z), calling them the hyperbolic cosine
and hyperbolic sine functions:

cosh(z) =
∞∑
n=0

z2n

(2n)!
, sinh(z) =

∞∑
n=0

z2n+1

(2n+ 1)!
.

In this section, we derive some properties of these functions and explain
their names.

Exercise 5.9. Use the series definitions to show that

(sinh(z))′ = cosh(z) and (cosh(z))′ = sinh(z).

Remark 5.6. You should compare the previous exercise to the sit-
uation for the circular trigonometric functions:

(sin(z))′ = cos(z) and (cos(z))′ = − sin(z).

The next exercise shows that cosh(z) and sinh(z) are the even and
odd parts of the complex exponential function.

Exercise 5.10.

a) Using the power series definitions, show that

exp(z) = cosh(z) + sinh(z).
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b) Show that cosh(z) is an even function and sinh(z) is an odd function:

cosh(−z) = cosh(z), sinh(−z) = − sinh(z).

c) Use parts a) and b) to show that

cosh(z) =
exp(z) + exp(−z)

2
and sinh(z) =

exp(z)− exp(−z)

2
.

Remark 5.7. You should compare the previous exercise to the fol-
lowing situation for the circular trigonometric functions cos(z) and sin(z):

exp(iz) = cos(z) + i sin(z)

cos(z) =
exp(iz) + exp(−iz)

2

i sin(z) =
exp(iz)− exp(−iz)

2
.

These relations reveal that cos(z) and i sin(z) are the even and odd
parts of the function exp(iz). Restricting to real values z = θ, we
obtain the more familiar fact that cos(θ) and sin(θ) are the real and
imaginary parts of exp(iθ):

exp(iθ) = cos(θ) + i sin(θ)

cos(θ) =
exp(iθ) + exp(−iθ)

2
= Re(exp(iθ))

sin(θ) =
exp(iθ)− exp(−iθ)

2i
= Im(exp(iθ)).

Just as we obtained circular trigonometric identities by taking pow-
ers of de Moivre’s formula exp(iθ) = cos(θ) + i sin(θ), we obtain identi-
ties for the hyperbolic functions cosh(z) and sinh(z) by taking powers
of the formula exp(z) = cosh(z) + sinh(z). For instance:

exp(2z) =
(
exp(z)

)2
= (cosh(z) + sinh(z))2

= cosh2(z) + 2 cosh(z) sinh(z) + sinh2(z).
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x2 + y2 = 1

θ

(cos(θ), sin(θ))

x2 − y2 = 1

(cosh(t), sinh(t))

Figure 5.11. The left hand side shows the parametriza-
tion of the unit circle using the circular trigonometric
functions (cos(θ), sin(θ)). The right hand side shows the
parametrization of the unit hyperbola using the hyper-
bolic trigonometric functions (cosh(t), sinh(t)). In each
case, the area of the shaded region is equal to one-half of
the parameter (θ or t).

Now take the even and odd parts of both sides:

cosh(2z) = cosh2(z) + sinh2(z)

sinh(2z) = 2 cosh(z) sinh(z).

To understand the term hyperbolic as applied to these functions,
restrict attention to real values z = t. Then we have

1 = ete−t = (cosh(t) + sinh(t))(cosh(t)− sinh(t)) = cosh2(t)− sinh2(t).

This means that as t varies, the point (cosh(t), sinh(t)) traces out the
right half of the unit hyperbola x2 − y2 = 1 (see right side of Fig-
ure 5.11). Compare this to the way that the point (cos(θ), sin(θ))

traces out the unit circle x2 + y2 = 1.
It is interesting to think more carefully about these parametriza-

tions of the circle and the hyperbola.

Exercise 5.11. Convince yourself that the area of the shaded re-
gion on the left side of Figure 5.11 is equal to θ/2. Thus, the pa-
rameter θ in [0, 2π) for the unit circle may be interpreted as twice
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the area of the shaded region swept out by the red radius pointing to
(cos(θ), sin(θ)).

We wish to show that the parameter t for the hyperbola also has
an interpretation as an area. Consider the shaded region on the right
in Figure 5.11, bounded by the x-axis, the hyperbola, and the red line
connecting the origin to the point (cosh(t), sinh(t)). Let A(t) denote
the area of this shaded region. Also consider the triangle with vertices
(0, 0), (cosh(t), 0), and (cosh(t), sinh(t)). Assuming that t > 0 as in the
figure, the area of the triangle is 1

2
cosh(t) sinh(t). Moreover, the area

A(t) is the difference between the triangular area and the area under
the hyperbola on the interval [1, cosh(t)]:

A(t) =
1

2
cosh(t) sinh(t)−

∫ cosh(t)

1

√
x2 − 1dx.

To compute the integral, we will make use of the following identities
established earlier:

cosh2(v)− 1 = sinh2(v)

cosh(2v) = cosh2(v) + sinh2(v) = 1 + 2 sinh2(v).

Now make the substitution x = cosh(v), so that dx = sinh(v)dv:∫ cosh(t)

1

√
x2 − 1dx =

∫ t

0

√(
cosh2(v)− 1

)
sinh(v)dv

=

∫ t

0

sinh2(v)dv

=
1

2

∫ t

0

(cosh(2v)− 1)dv

=

(
sinh(2v)

4
− v

2

)∣∣∣∣∣
t

0

=
sinh(2t)

4
− t

2
.
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Using the identity sinh(2t) = 2 cosh(t) sinh(t), we find that

A(t) =
1

2
cosh(t) sinh(t)− sinh(2t)

4
+
t

2

=
t

2
.

Hence, the parameter t = 2A(t) is twice the area of the shaded region
in Figure 5.11 swept out by the red line pointing from the origin to the
point (cosh(t), sinh(t)).

The hyperbolic trigonometric functions cosh(z) and sinh(z) have
many applications throughout mathematics, physics, and engineering.
We mention just two:

• They appear in the description of the Lorentz transformations
of special relativity, serving to relate the spacetime measure-
ments of two observers in uniform relative motion;
• For any constants A,B > 0, the graph of A cosh(x/B) is called
a weighted catenary curve. When A = B, the curve is an ordi-
nary catenary and describes the shape of an idealized hanging
chain supported only at its two ends. For this reason, weighted
catenaries are commonly used in engineering and architectural
applications. A prominent example is the St. Louis Gateway
Arch (Figure 5.12).

Key points from Section 5.4:

• The hyperbolic trigonometric functions cosh(z) and
sinh(z) (page 283)
• The identity cosh2(t)−sinh2(t) = 1 and parametrization
of the unit hyperbola x2 − y2 = 1 (Figure 5.11)
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Figure 5.12. Top: Graph of the weighted catenary
69 cosh(x/100); Bottom: “Gateway Arch & St. Louis
MO Riverfront at Dawn” by Parker Botanical is licensed
under CC BY-SA 3.0.

https://commons.wikimedia.org/wiki/File:Gateway_Arch_%26_St._Louis_MO_Riverfront_at_Dawn.jpg
https://commons.wikimedia.org/wiki/File:Gateway_Arch_%26_St._Louis_MO_Riverfront_at_Dawn.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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5.5. In-text Exercises

This section collects the in-text exercises that you should have worked
on while reading the chapter.

Exercise 5.1 Consider the logistic differential equation with relative
rate r = 0.1 and carrying capacity K = 100:

P ′(t) = 0.1P (t)− 0.1

100
(P (t))2

a) By direct computation, verify that the following function is a solu-
tion satisfying the initial condition P (0) = P0:

P (t) =
P0e

0.1t

1 + P0

100
(e0.1t − 1)

b) Show that if P0 > 0, then limt→∞ P (t) = 100, so that in the long-
run, the population described by this logistic equation converges to
its carrying capacity K = 100.

Exercise 5.2 Consider the differential equation f ′′(t) = −4f(t).

a) Check that the function f(t) = cos(2t) is a solution.
b) Check that the function f(t) = 3 sin(2t) is a solution.
c) More generally, check that for all constants A,B, the following func-

tion is a solution:

f(t) = A cos(2t) +B sin(2t).

Exercise 5.3 Find a solution to the differential equation f ′′(t) =

−4f(t) satisfying the initial conditions f(0) = 1 and f ′(0) = −1.

Exercise 5.4 Fix a complex number α and consider the differential
equation f ′(z) = αf(z). Mimic Example 5.1 to show that the unique
solution satisfying f(0) = a0 is given by the function f(z) = a0 exp(αz).

Exercise 5.5 Now consider the equation f ′′(z) = −f(z). Mimic Ex-
ample 5.2 to show that the unique solution satisfying f(0) = a0 and



290 5. APPLICATIONS TO DIFFERENTIAL EQUATIONS

f ′(0) = a1 is given by

f(z) = a0 cos(z) + a1 sin(z).

Note that taking a1 = ia0 yields the solution a0 exp(iz) to the differen-
tial equation f ′(z) = if(z).

Exercise 5.6 Show that for all constants A1, A2, the function f(z)

defined below is a solution to f ′′(z) + f ′(z) + f(z) = 0:

f(z) = A1 exp(α1z) + A2 exp(α2z).

(Here, α1 and α2 are the roots of the polynomial z2 + z + 1.)

Exercise 5.7 Solve the following pair of equations for A1 and A2:

A1 + A2 = a0

A1α1 + A2α2 = a1.

You should find that

A1 =
a0α2 − a1
α2 − α1

, A2 =
a0α1 − a1
α1 − α2

.

Exercise 5.8 Show by direct computation that x(t) = t exp(− rt
2

) is a
solution to the critically damped oscillator differential equation

x′′(t) + rx′(t) +
r2

4
x(t) = 0.

Exercise 5.9 Use the series definitions to show that

(sinh(z))′ = cosh(z) and (cosh(z))′ = sinh(z).

Exercise 5.10

a) Using the power series definitions, show that

exp(z) = cosh(z) + sinh(z).
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b) Show that cosh(z) is an even function and sinh(z) is an odd function:

cosh(−z) = cosh(z), sinh(−z) = − sinh(z).

c) Use parts a) and b) to show that

cosh(z) =
exp(z) + exp(−z)

2
and sinh(z) =

exp(z)− exp(−z)

2
.

Exercise 5.11 Convince yourself that the area of the shaded region
on the left side of Figure 5.11 is equal to θ/2. Thus, the parameter θ
in [0, 2π) for the unit circle may be interpreted as twice the area of the
shaded region swept out by the red radius pointing to (cos(θ), sin(θ)).
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5.6. Problems

5.1. Consider the population growth differential equation with initial
condition:

P ′(t) = rP (t), P (0) = P0.

Suppose that f(t) is a solution satisfying the initial condition, so that
f ′(t) = rf(t) and f(0) = P0. Then consider the function g(t) defined
by

g(t) =
f(t)

ert
.

Show that g′(t) = 0 for all t, and hence that g(t) is a constant function.
Then show that in fact g(t) = P0 for all t, and conclude that

f(t) = P0e
rt.

5.2. Consider the differential equation f ′(t) = −3f(t)+e−2t. Show that
for any constant C, the following function is a solution:

f(t) = e−2t + Ce−3t.

5.3. Consider the differential equation f ′(t) = sin(f(t)).

a) Show that for any constant C, the functions f(t) = ±2 arccot(eC−t)

are solutions. (Observe that these solutions never change sign: the
+ yields a positive solution, and the − yields a negative solution.)

b) Show that the constant C is the unique value of t for which f(t)

equals±π
2
(and hence the unique value of t for which f ′(t) equals±1).

5.4. Fix a nonzero complex number α and consider the differential
equation f ′′(z) = αf(z). Mimic Example 5.2 to show that the unique
solution satisfying f(0) = a0 and f ′(0) = a1 is given by

f(z) = a0 cosh(
√
α z) +

a1√
α

sinh(
√
α z).

Does it matter which square root of α you use?
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5.5. Fix complex numbers b and c and consider the differential equation

f ′′(z) + bf ′(z) + cf(z) = 0.

Under the assumption that b2 6= 4c, show that there are exactly two
values of α that yield a solution exp(αz) to the differential equation.
Adapt the method of Example 5.4 to find the solution with initial
conditions f(0) = 1 and f ′(0) = 0.

5.6. This problem concerns Bessel’s differential equation of order k = 1:

z2f ′′(z) + zf ′(z) + (z2 − 1)f(z) = 0.

Mimic the method of Example 5.5 to find a power series solution. Your
answer should involve one free constant a1. If you set a1 = 1

2
in your

solution, you should find the Bessel function of the first kind of order 1 :

J1(z) =
z

2

∞∑
n=0

(−1)n
z2n

22nn!(n+ 1)!
.

See Figure 5.13 for the graph of the real version of this function.

5.7. Fix a nonnegative integer k and consider Bessel’s differential equa-
tion of order k:

z2f ′′(z) + zf ′(z) + (z2 − k2)f(z) = 0.

Mimic the method of Example 5.5 to find a power series solution. Your
answer should involve one free constant ak. If you set ak = 1

2kk!
in your

solution, you should find the Bessel function of the first kind of order k:

Jk(z) =
zk

2k

∞∑
n=0

(−1)n
z2n

22nn!(n+ k)!
.

See Figure 5.13 for the graphs of the real versions of some of these
functions.

5.8. Fix a nonnegative integer k ≥ 0, and consider the differential
equation

zf ′′(z) + (1− z)f ′(z) + kf(z) = 0.
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Figure 5.13. Graphs of some real Bessel functions Jk(x)

Mimic the method of Example 5.5 to find the unique solution f(z)

with f(0) = 1. Explain why your answer is actually a polynomial of
degree k. It is called the kth Laguerre polynomial.
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