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Apparent Subdiffusion Inherent to Single Particle Tracking

Douglas S. Martin, Martin B. Forstner, and Josef A. Kés

Center for Nonlinear Dynamics, University of Texas at Austin, Austin, Texas 78712 USA

ABSTRACT Subdiffusion and its causes in both in vivo and in vitro lipid membranes have become the focus of recent
research. We report apparent subdiffusion, observed via single particle tracking (SPT), in a homogeneous system that only
allows normal diffusion (a DMPC monolayer in the fluid state). The apparent subdiffusion arises from slight errors in finding
the actual particle position due to noise inherent in all experimental SPT systems. A model is presented that corrects this
artifact, and predicts the time scales after which the effect becomes negligible. The techniques and results presented in this
paper should be of use in all SPT experiments studying normal and anomalous diffusion.

INTRODUCTION

Recent single particle tracking (SPT) experiments have
found anomalous diffusion of membrane constituents on
both cell and artificial membranes (Jacobson et al., 1995;
Saxton and Jacobson, 1997; Schiitz et al., 1997, 2000;
Cherry et al., 1998; Smith et al., 1999; Collier et al., 2001).
Anomalous diffusion of membrane proteins and lipids is
exciting for two main reasons. Biologically, anomalous
diffusion may be a method for cells to localize membrane
receptors and control intramembrane signaling. Physically,
non-Brownian diffusion indicates a breakdown of the cen-
tral limit theorem, rarely observed in nature.

The SPT technique has been used in a large field of
biophysical research to observe the lateral motions of lipids
and proteins in both cell membranes, such as the plasma and
nuclear membranes, and artificial membranes (for a com-
prehensive review, see Saxton and Jacobson, 1997). The
technique is based on tracking the fluorescence or scattering
signal of a nanoparticle bound to the molecule of interest
(Gelles et al., 1988; Sheetz et al., 1989; Lee et al., 1991;
Anderson et al., 1992; Ghosh and Webb, 1994; Schiitz et al.,
1997). In general, it involves a particle smaller than the
diffraction limit that is only visible as an Airy disk on top
of a noisy background. SPT relies on a signal strong
enough that intensified cameras can detect the particle’s
diffraction peak with high spatial accuracy (typically tens
of nanometers).

Normal diffusion of lipids and proteins is characterized
by the mean square displacement (MSD) of the particle
position growing linearly with respect to time, MSD ~ ¢. In
anomalous subdiffusion, in contrast, the MSD of the motion
grows as 1%, a < 1, in the long time limit. Several models
have been developed to explain anomalous diffusion on cell
surfaces. They include diffusion with static obstacles such
as fixed proteins (Saxton, 1994), cytoskeletal corrals where
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proteins are confined transiently to submicron corrals by
interaction with the cytoskeleton beneath the membrane
(Kusumi et al., 1993; Saxton, 1995), binding to obstacles
(Saxton, 1996), and interaction with lipid rafts (Schiitz et
al., 2000).

We have extended the SPT technique to look at diffusion
in the long time limit on Langmuir monolayers (Forstner et
al., 2001), in part because it becomes easier to distinguish
between scaling behaviors over long times. Interestingly,
we found signatures of anomalous diffusion at short time
scales, changing to normal diffusion at longer times. How-
ever, on homogeneous, fluid-phase dimyristoyl phosphati-
dylcholine (DMPC) monolayers, there is no underlying
mechanism to give rise to anomalous diffusion. To resolve
this discrepancy, we conducted simulations and created
analytic representations of the motion to develop a model
for the subdiffusion. Quantitative comparisons to data from
our DMPC experiments show that this model explains the
results and indeed is universal to SPT systems. We also
provide guidelines for which timescales will remain unaf-
fected in a noisy environment (always present in experi-
mental systems).

Because many SPT systems have neither a large obser-
vation space nor long time tracks, observed subdiffusion
may be the result of noise, and not any underlying mecha-
nism; moreover, very reliable measurements are needed to
determine scaling laws on short time experiments. The
methods presented in this paper can help to make the
measurements on short time systems more reliable, and, as
such, are of more general interest.

The paper is organized in the following manner: in the
next section, we present the model of how noise leads to
subdiffusion, followed by the experimental and computa-
tional methods used to develop and test this model. We then
present and discuss the results that confirm that apparent
subdiffusion can arise simply from noise.

THEORY

We begin with an analytical method to explain how appar-
ent subdiffusion occurs in noisy single-particle tracking.
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The noise causes error in determining the particle position.
This error changes the functional form of the mean square
displacement, and hence any quantities that are derived
from the MSD. In anomalous diffusion, the MSD is given
by (Saxton and Jacobson, 1997)

(r?) = MSD(A?) = 4DAs, (1)

where r(?) is the particle position at time ¢, D acts as the
diffusion coefficient, « is the actual scaling exponent (note
that we use the convention that « is the underlying anom-
alous diffusion coefficient and e, is the apparent exponent
found in the SPT experiments), and Af is the time lag
between two positions. The averaging operation { ) is over
all positions separated by the same Az. The standard method
to test for anomalous diffusion is to find « through a linear
fit to (Feder et al., 1996)

log(MSD(Af)) = alog(Ar) + log(4D), 2)

because this fit converges more consistently than the vari-
able power-law fit. The slope of this fit is the scaling
exponent «, and the offset gives the diffusion coefficient D.

For the simpler case of Brownian motion in two dimen-
sions, the mean square displacement is given by (Qian et al.,
1991),

MSD(A¢) = 4DA¢, 3)

where D is the actual diffusion coefficient. When there is
random error in the determination of the particle position,
characterized by mean error o, the MSD is calculated in the
appendix, and given by (Eq. A8 and Dietrich et al., 2002),

MSD(A#) = 4DAt + 20°. (4)

To find the diffusion coefficient, one standard method is
to perform a linear fit to MSD(A¢). The slope is D and
the intercept is 207, although the intercept is generally
discarded.

Now, however, the simple decomposition of log(MSD)
given in Eq. 2 does not work. That is, finding the slope of
log(4DAt + 207) is more complex, and is worked out in
detail in the Appendix (Eq. A10). This slope is the apparent
scaling coefficient, a,,, which is no longer constant even in
Brownian motion with noise, and is given by

1

» T 1+ 20%4DAt” ©)

aa
The single parameter 20%/4D determines how subdiffusive
the motion will appear; the larger the parameter, the more
subdiffusive the motion. For this reason, we use it to char-
acterize aap(At). Note that this parameter has the units of
seconds, when 202/4D = At, a,, = 0.67.

This result is intuitively explained by comparing linear
and logarithmic plots of the MSD with and without noise
(MSD,,, MSD, respectively), as shown in Fig. 1, ¢ and b. In
the linear plot in Fig. 1 a, there is only a constant offset
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FIGURE 1 A general idea of how error in particle position leads to

subdiffusion. (@) MSD(A?), for various error levels, on a linear plot. The
solid line is the MSD without noise and the dashed lines are the MSD with
noise, MSD,,. The noise results only in a constant offset of the MSD (the
range is restricted to highlight the difference between noise levels). (b)
Logarithmic plot of MSD(A#). Here, the constant offset due to noise
appears large at short times, but small at long times due to the logarithmic
scale. Thus, the slope at short times departs significantly from the noise
free value leading to apparent subdiffusion. (c) a,,(A#), on the same time
scale as (b). Even small values of 202/4D lead to significant reductions in
the apparent scaling exponent at short times, whereas larger values can lead
to apparent subdiffusion on the order of 10 s.

between MSD and MSD,,. In the logarithmic plot (Fig. 1 b),
at short values of A¢, the difference between log(MSD) and
log(MSD,) is large, whereas at long times, the difference is
small. This means that the slope of log(MSD,), Q,p, Must
start out smaller than the slope of log(MSD), « = 1.0, and
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then approach 1.0 for longer times. This is what causes the
apparent subdiffusion of noisy tracks at short times. In
addition, Fig. 1 ¢ shows how e, approaches 1.0 for differ-
ent values of 20°/4D. Tt should be stressed that this effect
will occur for all types of noise in any system using this
analysis of the MSD.

METHODS

The experimental procedure used to observe diffusion in lipid monolayers
is described in detail elsewhere (Forstner et al., 2001). A lipid monolayer
was prepared on a Langmuir trough from vesicles spread from the aqueous
subphase, and compressed to the desired surface pressure. The surface
pressures used were between 5 and 35 mN/m, the fluid state for the
monolayers at about 23°C. The monolayer consisted of DMPC (Avanti
Polar Lipids, Alabaster AL) and Texas Red-X labeled dipalmitoyl phos-
phoethanolamine (DPPE) (Molecular Probes, Eugene, OR) in a molar ratio
of 2000:1. At these small molar ratios, there is no phase separation or
domain formation. Small gold colloids (30 or 100 nm in diameter) (Gold-
mark Biologicals, Phillipsburg, NJ) were conjugated with anti-Texas
Red-X, and attached to the vesicles before spreading, with a ratio of
gold-tagged lipid (DPPE) to untagged lipid (DMPC with DPPE) of ~1:
10°-1:10'. The gold colloids were observed via darkfield microscopy
(Olympus BX-FLA, 50 X 0.8 NA darkfield objective, Melville, NY).

The darkfield images were digitized at 30 frames per second, and
particles were tracked via the method described by Crocker and Grier
(1996) with an accuracy of 100—-350 nm. The MSD as a function of time
interval At is calculated following Qian et al. (1991),

N-n

MSD(Af) = ﬁ :El [r(i8t + ndt) — r(j8)*,  (6)

where, as in Eq. 1, r(?) is the position of a particle at time ¢, & is the time
step between two successive pictures of the labeled molecule, n is the
number of steps such that ndt = At, and N is the total number of steps in
a track. In these experiments, 6 = Y30 s, and N was up to 10,000 steps. To
correct for collective motions of the monolayer, we compared the motions
of nearby particles (Forstner et al., 2001).

As described above (Eq. 4), we first find D and o from a linear fit to the
MSD. This proves one method to determine 26%/4D. To find this parameter
in a second independent way, we determine the local slope of log(MSD)
from d(log(MSD))/d(log(A?)), which is exactly the apparent scaling coef-
ficient a,, (as a in Eq. 2). The analytic form of this derivative, o, (Af) =
1/(1 + 20%/4DAy), is found in the Appendix (Eq. A10). Finally, we again
find 20%/4D from a one-parameter fit to @,,(A?). It should be noted that the
numerical derivative of log(MSD) becomes noisier at long times due to the
compression of the logarithmic scale. This is taken into account by weight-
ing the one-parameter fit inversely proportional to the density of the data.
We compare the two independently found values of 20%/4D to test the
accuracy of the model.

SIMULATIONS

We run two types of simulations of noisy diffusion. In one,
we create artificial noisy movies of particle motion in two
dimensions. Our SPT routine is run on these to find the error
in particle position as a function of camera noise. In the
other, we generate random walks with position error built
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in. We use these random walks to test our analytic model for
apparent subdiffusion.

Error calculation

The standard procedure for estimating errors in particle
position in SPT experiments is to attach the particle to a
fixed substrate, such as a glass coverslip (Gelles et al.,
1988), and track the particle position. Because the particle is
fixed, the observed scatter in particle position is the estimate
of the error. However, this is an underestimate, due to the
enhanced signal-to-noise ratio of a particle fixed to a uni-
form substrate. For example, the uniform slide reduces the
scattering background, enhancing the signal-to-noise ratio
for DIC and darkfield microscopy. The same holds true
for fluorescence microscopy, because the slide has no
fluorescence response. To estimate the error in particle
position under experiment-like conditions, we have cre-
ated simulated movies of a particle diffusing. We first
generate random walks following the method described
by Saxton (1993), using the probability distribution for
the step size r,

1 7
P) = 4aDot eXP[ - 4DSJ’ @

where 6f is the time between steps, as above. For each time
step ot, the distribution is inverted to calculate a step size
based on a uniform random variable [0, 1]. The direction of
the step is then picked randomly from [0, 27]. For the
specific parameters, we use a diffusion coefficient D = 1
X108 cm?/s and & = 0.033 s (similar to DMPC mono-
layers and video-rate microscopy, respectively).

These random walks are then used as the basis of a
simulated movie. We created a particle with a Gaussian
profile of the same width we observe via the camera in the
real system (~1.5 pixels or 700 nm, full width half maxi-
mum). We used intensity profiles and background noise
levels representative of real experiments (see Fig. 2). For
example, a typical simulation image is shown in Fig. 2 b,
where the background noise has a Gaussian intensity distri-
bution, with a standard deviation of ~12, and the peak
height of the particle is ~60 above the mean background on
an 8-bit gray scale (these are the noise and signal values,
respectively). The length of the movies is 100—10,000 time
steps. To cover the area through which the particle diffuses,
the movies are 120 X 120 pixels for the shorter tracks and
up to 240 X 240 pixels for longer tracks. We simulate
signal-to-noise ratios ranging from 2.5:1 (limit of the track-
ing routine) to % (no noise).

We then determine the position of the particle in each
frame of the simulated movie using the particle-tracking
software. These positions are compared with the actual
positions of the particle (from the underlying random walk),
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FIGURE 2 Schematic showing how camera noise leads to error in par-
ticle position, and how camera noise levels differ between experimental
conditions and fixed substrate conditions. (a) Real image of a 30-nm gold
colloid attached to a monolayer. The white circle is off center due to
camera noise. It is deflected left by the slight bright patch to the left of the
gold particle. (b) Simulated image with similar noise characteristics. Mov-
ies of such images are used to track error in particle position. Typical
parameters for simulated movies are: background mean intensity of 75—
150; particle peak from 30 to 60 above the background; and noise standard
deviation of 5-15 around the background, all in 8-bit gray-scale intensities
of 0-255. (¢) Image of a gold colloid dried on a cover slide, the standard
method used to estimate error in particle position. The signal-to-noise ratio
is a factor of 10 higher than for the center and left images. (d) Schematic
showing how camera noise leads to error in particle position. The columns
indicate pixel intensity. The shaded column represents a higher intensity at
that pixel due to camera noise. Gaussian fits to the pixel intensities are
shown. The noisy pixel skews the peak toward the right by 0.24 units
(arrows).

and the average distance o between actual and calculated
particle position is found. A plot of the error o versus
camera noise is shown in Fig. 3. Using the above tracking
algorithm and particle width, we find,

o =122 pm X NS, (8)

where N/S is the noise-to-signal ratio. However, the specific
multiplier depends on the particle width and tracking
method used.

Test of analytic model

Simulations were also conducted to test our model of sub-
diffusion. We again generate random walks based on the
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FIGURE 3 Error in particle position as a function of camera noise,
calculated from simulated movies. The error in particle position follows a
linear relation (dashed line) with noise-to-signal ratio (where noise is
defined as the standard deviation of the background noise level). For our
particular tracking routine, the relationship is o = 1.22 um X N/S.
Estimates of error in particle position were made using this formula for the
experimental noise-to-signal ratios. This error represented approximately
% of the actual value (see text).

probability distribution in Eq. 7, and then add an error to
each point based on the distribution (Eq. A2),

1 Ir — r|?
P(r,r') = py— exp[ 702 ], 9)

where r’ is the position where the particle is found, and r is
the original position. The simulations conducted above
show that the error in particle location can be well fit by
such a Gaussian function. Walks of varying length (100—
100,000 steps) were created, with 20%/4D ranging from
0.005 to 0.5 s. We then calculate the MSD from Eq. 6, and
follow the technique described above to calculate a,,(A?)
and compare this with the underlying parameters o and D.

RESULTS

The diffusion data from DMPC presented in the section
below show both normal and anomalous diffusion. The
noise model describes the experimental anomalous diffu-
sion, and is also supported by simulation data. We begin,
however, with a test of Eq. 8. To do this, we compare the
error in particle position predicted from the camera noise in
experimental movies to that found from the experimental
mean square displacements.

The value of the error in particle position o found through
the linear fit to the MSD (Eq. 4) accurately predicts the
extent of subdiffusion both in experiments and simulations.
This error is denoted oy, below. However, we have also
presented two other methods of determining o. o, is the
value determined from the signal-to-noise ratio of the actual
movies of diffusing particles (Eq. 8). oy, is the input value
for the simulation of noisy random walks (Eq. 9). The ratio
020/ 0%, Tanged from —1.7 to 0.84 over 11 experiments,
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with 0%, even negative for one experiment. If we exclude
this experiment, however, the average ratio is 0.64 = 0.15.
Thus, excluding the negative value, camera noise explains
about %5 of the particle error. The remainder could come
from wider variations in image quality during one track,
such as spatial and temporal illumination variations within
one movie. In contrast, in simulations with o, given by
Eq. 9, 04y = 0g- Thus, the error in particle position
accurately propagates through the MSD. Because the value
of 0%, is the mathematically important quantity, we use it in
the subsequent analyses of diffusive tracks, and adopt the
notation o = oy

Diffusion in the homogeneous fluid phase of DMPC
monolayers is normal, « = 1, and diffusion coefficients D
are on the order of 1-10 X 10~® cm?/s (Cevc, 1993). A
typical low camera noise plot of the MSD with time is
shown in Fig. 4 a, where the offset due to the noise is quite
small (20%/4D = 1.6 X 107? s). Although the motion
initially looks subdiffusive (a,, = 0.8, Fig. 4, b and ¢), it
quickly becomes clear that it is normal. The plot of a,,(A?)
both from the logarithmic data and linear value of o and D
is given in Fig. 4 c. The scaling exponents derived from
both methods lie within 0.08, and the difference in 20%/4D
using the two methods is 6 X 1072 s. The value of (A7)
reaches 90% of « within 0.2 s using either method. Thus, for
low-noise data, normal diffusion is quickly, though not
instantaneously, recovered.

Figure 5 a shows a similar plot of the MSD with time for
another DMPC monolayer, with higher noise values. In this
case, the motion looks very subdiffusive, a,, = 04 for the
first decade (Fig. 5, b and c¢). The experimental value of
20%/4D = 0.13 s leads to a predicted time where Ay
approaches « of 1.2 s (the actual values are 0.11 and 1.0 s,
respectively, see Fig. 5 ¢). Thus, at high noise values, the
model accurately predicts both the scaling coefficient and
the temporal extent of the apparent subdiffusion.

We use simulated noisy random walks to show that the
analytical model gives the correct functional form for the
scaling coefficient. Simulations are much faster to conduct
than experiments, and so can fill in a much wider range of
parameters. To explore the effect of statistics, we calculate
« for a variety of track lengths (100-100,000 steps) and
noise values. The scaling coefficient for a typical noisy
track is shown in Fig. 6 for simulated tracks of 100 and 5000
time points, with a diffusion coefficient D of 1 X 10~®
cm?/s (typical for DMPC monolayers) and an error in par-
ticle position o of 700 nm (higher than the experimental
data shown in Fig. 5, but with 20%/4D = 0.25 s). Figure 6
shows the agreement between the analytic form of a,,(Af),
and the slope of log(MSD). In addition, the short track (Fig.
6 b) shows how difficult it is to determine the scaling
exponent in the face of noise with relatively few data.

For simulated tracks of 10,000 steps with the initial value
of a,, ranging between 0.06 and 0.87 (20%/4D ranging

p
between 0.5 and 0.005 s, respectively), the analytic model
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FIGURE 4 Typical data for a low noise experiment, showing the same
plots as in Fig. 1. These show that low noise leads to a small offset in the
linear MSD, and thus only a small apparent deviation from normal diffu-
sion. (a) Linear plot of MSD(A¢). For comparison, the linear fit is shown
(dotted line), and the linear fit with the noise term, 207, subtracted out is
also shown (long dashed line). (b) MSD(Af) in a logarithmic plot. The
dashed line is a fit out to 0.27 s, which gives an apparently subdiffusive
scaling exponent of 0.8. After ~'5 s, MSD(A7) bends upward, and the
change in slope is visible. (c) a,,(A?), on the same time scale as (b). In (c),
the long dashed line represents the noise-free value of «. The dotted line is
a,,(A?) based on the linear fit; the short dashed line is a fit to the
experimental a,,(A?) (found from the slope of log(MSD(A?)), as in Eq. 5).
The specific parameters from the experiment are: the total number of steps
in this experiment is 2300, at a surface pressure of 15 mN/m. The error in
particle position is 120 nm (from Fig. 3), more importantly, o from the fit
is 175 nm. The diffusion coefficient is measured as 1.0 X 10~* cm?/s.
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FIGURE 5 Typical high noise experiment, which contrasts with the low
noise experiment of Fig. 4. The higher noise values lead to a large offset
in the linear MSD, and hence to apparent subdiffusion. (a) Linear plot of
MSD(Af). As in Fig. 4, the linear fit (dotted line) and linear fit without
noise are shown. However, there is a larger offset in this experiment
(20% = 0.38 um?). (b) MSD(A?) on a logarithmic plot. The offset leads to
apparently very subdiffusive motion. Over the first decade, a fit to
log(MSD(A?)) gives a,, = 0.46 = 0.06. At longer times, the MSD returns
to normal diffusion, e, = 0.96 = 0.07 (upper and lower dashed lines,
respectively). (¢) a,,(Af) on the same time scale as (b); the solid line is the
gradient of log(MSD(A?)). As in Fig. 4, the dotted line is a,,(A?) based on
the linear fit, the short dashed line is a fit to the gradient. Once again,
a,,(A?) based on the linear fit is a good predictor of the apparent scaling
exponent. The specific parameters from the experiment are: the total
number of steps in this experiment is 2511, at a surface pressure of 23
mN/m (still in the fluid phase). Here we calculate o = 310 nm and D =
3.7 X 10% cm?/s.
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works very well. The average deviation between 20%/4D
found from the linear MSD and 2¢°/4D from a fit of a,,(A7)
to the gradient of log(MSD) is only 0.0005 = 0.007 s. This
is consistent with no difference in 20%/4D between the
analytic form and the actual fit. In addition, the gradient of
log(MSD) is within 0.1 of the analytic form of a,,(Af) out
to At = 10 s. Once again, the benefit of long tracks, i.e.,
long time accuracy of scaling behavior, is made clear.

DISCUSSION

Throughout the experiments on DMPC, the initial scaling
behavior ranges from highly subdiffusive to approximately
normal. In particular, a,, ranges between 0.08 and 1.17 and
so the parameter 20°/4D ranges between 0.38 s and —5 X
1073 s, respectively. Despite this widely varying behavior,
the analytic model presented for a,,(A?) (and hence appar-
ent subdiffusion) works for the entire experimental range of
noise. The average difference between 20°/4D from the
derivative of log(MSD), and from the linear fit to the MSD
is only 3.7 X 1072 + 11 X 1072 s, consistent with no
deviation. For large values of 20%/4D (0.1 s), there is only
a small relative correction (a,,) approaches the actual scal-
ing exponent («), and when experimental data can be relied
upon for the scaling exponent.

As Fig. 1 and the above results demonstrate, even rela-
tively small amounts of noise can lead to apparently large
subdiffusive effects at short times. Two practical methods of
determining how subdiffusive a track will appear are shown
in Fig. 7. The first is the value of the apparent scaling
coefficient a,, as a function of 20%/4D and At, and is shown
as a contour plot in Fig. 7 a. The second is the time at which
@,, approaches within 90% of a. This sets a time scale
below which information on the scaling coefficient is inac-
curate. A contour plot of this time is shown in Fig. 7 b, as
a function of o and D. Figure 7 shows that even small errors
such as 0 = 10 nm can lead to a,, <0.9 on cells where
diffusion coefficients of proteins are on the order of
107" cm?/s.

Adding to the impact of small errors for small diffusion
coefficients, the standard method of determining o can be a
significant underestimation. This method observes immo-
bile particles, and calculates o given D = 0 (MSD = 207).
If these particles are immobilized under the same conditions
as the SPT experiments (that is, on the same membrane,
with the same lighting), o should be representative. How-
ever, if they are immobilized on a solid substrate, the
signal-to-noise ratio can increase significantly. In our im-
mobilized particle experiments, the signal-to-noise ratio in-
creases to ~50:1 (a factor of 4—12 from typical noise levels,
see Fig. 2 ¢), and so gives an error in particle position of
o = 25 nm. Thus, for a diffusion coefficient of 1.0 X
10~® cm?%/s, the time at which a becomes reliable is ex-
pected to be 0.006 s (undetectable) but is actually 0.09-0.8
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FIGURE 6 The «a,,(Af) from simulated noisy random walks, showing both the accuracy of the analytic form and the value of long tracks. (a) Walk of
5000 steps, with 20%/4D = 0.25 s. The analytic representation of a,,(A?) (dashed line) fits the noisy data (solid line) to within ~0.1 out to 5 s. (b) Walk
of 100 steps, with 20°/4D = 0.25 s. Here, there is a significant variation in a,,(A?). In this case, the scaling exponent has a 0.5 variation about the analytic
form after ~0.2 s, showing the difficulty in determining an accurate scaling exponent for short tracks.

s (beyond the first decade). Indeed, this would cause the
apparent subdiffusion to be accepted as real.

One clue that noise may be the cause of subdiffusion is a
widely varying scaling exponent. The scaling exponent can
change based on the underlying model of subdiffusion and
parameters in the model, for example, obstacle fraction
(Saxton, 1994). However, if lighting conditions differ from
experiment to experiment (as they can without affecting the
diffusion coefficient), or even from location to location
within the same experiment (the sides of cells may be out of
focus compared to the top, for example), the value of «,,
will vary. Cases such as our DMPC study with widely
ranging values of a,, should be considered with particular
care to be sure that noise is not a contributing factor to the
observation of anomalous diffusion.

The method of determining the scaling coefficient de-
scribed in this paper assumes underlying normal diffusion.
However, even if anomalous diffusion is occurring, the
noise effect can skew the calculated a,, to lower values. An
analytical formula for a,, requires knowledge of the step
size distribution, and, as such, can be quite complex or
nonexistent in the anomalous diffusion case. In a first ap-
proximation, though, «,, can be found by adding a constant
noise term to the MSD (Eq. 1) (approximate because this
separation requires a Gaussian step-size distribution). Thus,

d

Qyp = m IOg(MSD)

log(4DAt* + 207). (10)

_ d
~ d(log(A?))

Using a similar method to that in the mathematical appen-
dix, we arrive at,

1
= a[H—Zol/élDAt“]’ an

where « is the actual anomalous diffusion scaling exponent
as above. Consequently, the apparent scaling exponent is
reduced in a very similar way to that seen in normal diffu-
sion with noise. Finding « from Eq. 11 is difficult because
of its appearance in Ar®. Curve fitting with a variable
exponent does not converge reliably, and is thus subject to
the same constraints that lead to the use of Eq. 2 instead of
Eq. 1. The most that can be taken from Eq. 11 is that, once
again, a time scale exists below which the scaling coeffi-
cient is inaccurate.

The experiments in this study show that subdiffusion
results from error in particle position in one specific case,
namely that of DMPC monolayers in the fluid (liquid-
expanded) phase. In general, though, the result is system
independent: apparent subdiffusion arises solely from errors
in finding particle position and the analysis of log(MSD)
versus log(Af). Ultimately, error in particle position is in-
herent to the SPT technique. Typical tracking routines may
find particle location by fitting a Gaussian intensity profile
to the actual intensity profile of the particle and taking the
peak of the Gaussian as the particle position, or by using the
weighted center of intensity as the particle position. Either
way, if a pixel within the fitting routine is artifactually
brighter or dimmer due to noise, the particle position is
shifted closer or further from that pixel, respectively (see
Fig. 2 d). The details of the size of the error depend on the
specific tracking routine.

Although the consideration of noise in single-particle
tracking is not new (Qian et al., 1991; Dietrich et al., 2002),
noise as a cause of apparent subdiffusion was unanticipated.
We have suggested one method to circumvent the noise
problem: there is a timescale beyond which the impact of
camera noise will be negligible. Other analyses may intrin-
sically circumvent the noise problem, or require other rem-
edies. Additionally, there may be other mathematical ways

Biophysical Journal 83(4) 2109-2117
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FIGURE 7 Two methods for quickly determining the amount and length
of apparent subdiffusion from SPT data. (a) «,, as a function of 20°/4D
and Az. This graph gives the level of apparent subdiffusion for a given error
(0)—diffusion coefficient (D) combination and time length. For example,
20°/4D = 0.05 s corresponds to ¢ = 10 nm and D = 10" cm?/s or ¢ =
100 nm and D = 10~ cm?/s (two typical combinations). Brownian motion
appears subdiffusive out to 0.5 s in this case. (b) Time (A¢) at which a,,
reaches 0.9 as a function of error and diffusion coefficient. This time can
be long (~1 s) for the above values of o and D, and even longer for
marginally noisier data.

to attack the issue. However, the error in particle position
itself is inescapable, and should carefully be considered in
any SPT experiment.

APPENDIX

One way of describing a two-dimensional random walk is in terms a
probability P(r, 7) of finding a particle at position r after time ¢ (dropping
the symbol A), given by,

1 r2
P(l‘, l‘) = m exp[—m], (Al)
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where D is the diffusion coefficient. The camera noise can be modeled by
a probability P(r, r") of detecting the particle at position r’ given that the
particle is actually at position r,

1 e —r'f
P(I‘, l") = m exp{— 20_2:|, (A2)

where o is the standard deviation of the error in positioning accuracy. We
can then combine these probabilities into a new function P’(r’, ), which
gives the probability of finding the particle at ¥’ at time 7, given by,

] 2m
P'(r', 1) = rdr doP(r, t)P(r, r’)
0 0
R S T
= 0 rdr ) do mm

P r—r'f

X exp[—4Dt — 20_2] (A3)

Expanding the exponent in the lower term, we arrive at a new exponent,

2 (20% + 4D
207 20%4ADt

2rr'cos 6

207

(A4)

where 6 is the angle between the vectors r and r’. The integral over 6
becomes

2
’

rr' rr
de exp[(ol>cos 6] = 27TJ0(1' 02), (AS5)

0

following Egs. 9.6.3 and 9.6.16 in Abramowitz and Segun (1965), where J,
is the Bessel function. The integral over r (independent of prefactors)
becomes

%

20° + 4Dt ir'
rdrexp| ———==—1r|J| =7

20%4Dt o’
0
1 20%4Dt 4Dt .
=220 + 401 | 20220? + 4Dy |0 (A0

as in Eq. 11.4.29 in Abramowitz and Segun (1965). P'(r’, ?) is thus (Egs.
A3-A6),

1 1 1 20%4Dt

P00 = D 2002 2™ 2 267 + 4D

( 4Dt 1>,2
XX 202207 + 4D1) ~ 207)"

12

1
~ (20> + 4D1) exp{‘ 202+4Dt]- (A7)
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The mean squared displacement then becomes

MSD = (r'?)

©

_7",2
! ’or2
2 A 567 T 4Di) eXp[zal + 4Dt}
0

207 + 4Dt.

(A8)

Thus, the effect of an error o in particle location is to add a constant to the
mean square displacement (as in Eq. 4 in the main text).

To describe what occurs in the presence of noise, where (r?) = 4Dt +
207 (from Eq. 4 or Eq. A8), we consider the plot of log(MSD) versus log(?).
The slope of this plot is «,,, from MSD ~ . The slope is given by

ap?

_d(log(MSD))
ay,(t) = d(log) ~ d(iog(0) [log(4Dt + 207)].
(A9)
Substituting ¢+ = 10%, we arrive at,
d
(1) = i [log(4D(10%) + 207)]
B In(10)log(e)4D(10%)
 4D(10Y) + 207
_ 4Dt
4Dt + 207
1
(A10)

1+ (20%4Dt)
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